Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimafvelsetpreimafv | Structured version Visualization version GIF version |
Description: The preimage of a function value is an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
preimafvelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ 𝐴) | |
2 | fveq2 6811 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
3 | 2 | sneqd 4582 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {(𝐹‘𝑥)} = {(𝐹‘𝑋)}) |
4 | 3 | imaeq2d 5986 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (◡𝐹 “ {(𝐹‘𝑥)}) = (◡𝐹 “ {(𝐹‘𝑋)})) |
5 | 4 | eqeq2d 2747 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)}))) |
6 | 5 | adantl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) → ((◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)}))) |
7 | eqidd 2737 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)})) | |
8 | 1, 6, 7 | rspcedvd 3571 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
9 | 8 | 3ad2ant3 1134 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
10 | fnex 7132 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
11 | cnvexg 7817 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
12 | imaexg 7808 | . . . . 5 ⊢ (◡𝐹 ∈ V → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) | |
13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) |
14 | 13 | 3adant3 1131 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) |
15 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
16 | 15 | elsetpreimafvb 45106 | . . 3 ⊢ ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ V → ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}))) |
17 | 14, 16 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}))) |
18 | 9, 17 | mpbird 256 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {cab 2713 ∃wrex 3070 Vcvv 3440 {csn 4570 ◡ccnv 5606 “ cima 5610 Fn wfn 6460 ‘cfv 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 |
This theorem is referenced by: imasetpreimafvbijlemfo 45127 fundcmpsurbijinjpreimafv 45129 |
Copyright terms: Public domain | W3C validator |