| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > preimafvelsetpreimafv | Structured version Visualization version GIF version | ||
| Description: The preimage of a function value is an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| preimafvelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ 𝐴) | |
| 2 | fveq2 6876 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 3 | 2 | sneqd 4613 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {(𝐹‘𝑥)} = {(𝐹‘𝑋)}) |
| 4 | 3 | imaeq2d 6047 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (◡𝐹 “ {(𝐹‘𝑥)}) = (◡𝐹 “ {(𝐹‘𝑋)})) |
| 5 | 4 | eqeq2d 2746 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)}))) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) → ((◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)}))) |
| 7 | eqidd 2736 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)})) | |
| 8 | 1, 6, 7 | rspcedvd 3603 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
| 9 | 8 | 3ad2ant3 1135 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
| 10 | fnex 7209 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
| 11 | cnvexg 7920 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
| 12 | imaexg 7909 | . . . . 5 ⊢ (◡𝐹 ∈ V → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) |
| 14 | 13 | 3adant3 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) |
| 15 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 16 | 15 | elsetpreimafvb 47398 | . . 3 ⊢ ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ V → ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 17 | 14, 16 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 18 | 9, 17 | mpbird 257 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 Vcvv 3459 {csn 4601 ◡ccnv 5653 “ cima 5657 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: imasetpreimafvbijlemfo 47419 fundcmpsurbijinjpreimafv 47421 |
| Copyright terms: Public domain | W3C validator |