| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > preimafvelsetpreimafv | Structured version Visualization version GIF version | ||
| Description: The preimage of a function value is an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| preimafvelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ 𝐴) | |
| 2 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 3 | 2 | sneqd 4597 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {(𝐹‘𝑥)} = {(𝐹‘𝑋)}) |
| 4 | 3 | imaeq2d 6020 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (◡𝐹 “ {(𝐹‘𝑥)}) = (◡𝐹 “ {(𝐹‘𝑋)})) |
| 5 | 4 | eqeq2d 2740 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)}))) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) → ((◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)}))) |
| 7 | eqidd 2730 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)})) | |
| 8 | 1, 6, 7 | rspcedvd 3587 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
| 9 | 8 | 3ad2ant3 1135 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
| 10 | fnex 7173 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
| 11 | cnvexg 7880 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
| 12 | imaexg 7869 | . . . . 5 ⊢ (◡𝐹 ∈ V → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) |
| 14 | 13 | 3adant3 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) |
| 15 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 16 | 15 | elsetpreimafvb 47358 | . . 3 ⊢ ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ V → ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 17 | 14, 16 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}))) |
| 18 | 9, 17 | mpbird 257 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3444 {csn 4585 ◡ccnv 5630 “ cima 5634 Fn wfn 6494 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: imasetpreimafvbijlemfo 47379 fundcmpsurbijinjpreimafv 47381 |
| Copyright terms: Public domain | W3C validator |