Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimafvelsetpreimafv Structured version   Visualization version   GIF version

Theorem preimafvelsetpreimafv 47389
Description: The preimage of a function value is an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
preimafvelsetpreimafv ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ∈ 𝑃)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑋,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem preimafvelsetpreimafv
StepHypRef Expression
1 id 22 . . . 4 (𝑋𝐴𝑋𝐴)
2 fveq2 6858 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
32sneqd 4601 . . . . . . 7 (𝑥 = 𝑋 → {(𝐹𝑥)} = {(𝐹𝑋)})
43imaeq2d 6031 . . . . . 6 (𝑥 = 𝑋 → (𝐹 “ {(𝐹𝑥)}) = (𝐹 “ {(𝐹𝑋)}))
54eqeq2d 2740 . . . . 5 (𝑥 = 𝑋 → ((𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)}) ↔ (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑋)})))
65adantl 481 . . . 4 ((𝑋𝐴𝑥 = 𝑋) → ((𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)}) ↔ (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑋)})))
7 eqidd 2730 . . . 4 (𝑋𝐴 → (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑋)}))
81, 6, 7rspcedvd 3590 . . 3 (𝑋𝐴 → ∃𝑥𝐴 (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)}))
983ad2ant3 1135 . 2 ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → ∃𝑥𝐴 (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)}))
10 fnex 7191 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
11 cnvexg 7900 . . . . 5 (𝐹 ∈ V → 𝐹 ∈ V)
12 imaexg 7889 . . . . 5 (𝐹 ∈ V → (𝐹 “ {(𝐹𝑋)}) ∈ V)
1310, 11, 123syl 18 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → (𝐹 “ {(𝐹𝑋)}) ∈ V)
14133adant3 1132 . . 3 ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ∈ V)
15 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1615elsetpreimafvb 47385 . . 3 ((𝐹 “ {(𝐹𝑋)}) ∈ V → ((𝐹 “ {(𝐹𝑋)}) ∈ 𝑃 ↔ ∃𝑥𝐴 (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)})))
1714, 16syl 17 . 2 ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → ((𝐹 “ {(𝐹𝑋)}) ∈ 𝑃 ↔ ∃𝑥𝐴 (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)})))
189, 17mpbird 257 1 ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  {csn 4589  ccnv 5637  cima 5641   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  imasetpreimafvbijlemfo  47406  fundcmpsurbijinjpreimafv  47408
  Copyright terms: Public domain W3C validator