Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimafvelsetpreimafv | Structured version Visualization version GIF version |
Description: The preimage of a function value is an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
preimafvelsetpreimafv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 ∈ 𝐴) | |
2 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
3 | 2 | sneqd 4570 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → {(𝐹‘𝑥)} = {(𝐹‘𝑋)}) |
4 | 3 | imaeq2d 5958 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (◡𝐹 “ {(𝐹‘𝑥)}) = (◡𝐹 “ {(𝐹‘𝑋)})) |
5 | 4 | eqeq2d 2749 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)}))) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) → ((◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}) ↔ (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)}))) |
7 | eqidd 2739 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑋)})) | |
8 | 1, 6, 7 | rspcedvd 3555 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
9 | 8 | 3ad2ant3 1133 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)})) |
10 | fnex 7075 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐹 ∈ V) | |
11 | cnvexg 7745 | . . . . 5 ⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) | |
12 | imaexg 7736 | . . . . 5 ⊢ (◡𝐹 ∈ V → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) | |
13 | 10, 11, 12 | 3syl 18 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) |
14 | 13 | 3adant3 1130 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ V) |
15 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
16 | 15 | elsetpreimafvb 44724 | . . 3 ⊢ ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ V → ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}))) |
17 | 14, 16 | syl 17 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → ((◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃 ↔ ∃𝑥 ∈ 𝐴 (◡𝐹 “ {(𝐹‘𝑋)}) = (◡𝐹 “ {(𝐹‘𝑥)}))) |
18 | 9, 17 | mpbird 256 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 Vcvv 3422 {csn 4558 ◡ccnv 5579 “ cima 5583 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: imasetpreimafvbijlemfo 44745 fundcmpsurbijinjpreimafv 44747 |
Copyright terms: Public domain | W3C validator |