Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimafvelsetpreimafv Structured version   Visualization version   GIF version

Theorem preimafvelsetpreimafv 47427
Description: The preimage of a function value is an element of the class 𝑃 of all preimages of function values. (Contributed by AV, 10-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
preimafvelsetpreimafv ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ∈ 𝑃)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑋,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem preimafvelsetpreimafv
StepHypRef Expression
1 id 22 . . . 4 (𝑋𝐴𝑋𝐴)
2 fveq2 6822 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
32sneqd 4585 . . . . . . 7 (𝑥 = 𝑋 → {(𝐹𝑥)} = {(𝐹𝑋)})
43imaeq2d 6008 . . . . . 6 (𝑥 = 𝑋 → (𝐹 “ {(𝐹𝑥)}) = (𝐹 “ {(𝐹𝑋)}))
54eqeq2d 2742 . . . . 5 (𝑥 = 𝑋 → ((𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)}) ↔ (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑋)})))
65adantl 481 . . . 4 ((𝑋𝐴𝑥 = 𝑋) → ((𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)}) ↔ (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑋)})))
7 eqidd 2732 . . . 4 (𝑋𝐴 → (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑋)}))
81, 6, 7rspcedvd 3574 . . 3 (𝑋𝐴 → ∃𝑥𝐴 (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)}))
983ad2ant3 1135 . 2 ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → ∃𝑥𝐴 (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)}))
10 fnex 7151 . . . . 5 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
11 cnvexg 7854 . . . . 5 (𝐹 ∈ V → 𝐹 ∈ V)
12 imaexg 7843 . . . . 5 (𝐹 ∈ V → (𝐹 “ {(𝐹𝑋)}) ∈ V)
1310, 11, 123syl 18 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉) → (𝐹 “ {(𝐹𝑋)}) ∈ V)
14133adant3 1132 . . 3 ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ∈ V)
15 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1615elsetpreimafvb 47423 . . 3 ((𝐹 “ {(𝐹𝑋)}) ∈ V → ((𝐹 “ {(𝐹𝑋)}) ∈ 𝑃 ↔ ∃𝑥𝐴 (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)})))
1714, 16syl 17 . 2 ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → ((𝐹 “ {(𝐹𝑋)}) ∈ 𝑃 ↔ ∃𝑥𝐴 (𝐹 “ {(𝐹𝑋)}) = (𝐹 “ {(𝐹𝑥)})))
189, 17mpbird 257 1 ((𝐹 Fn 𝐴𝐴𝑉𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  {csn 4573  ccnv 5613  cima 5617   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by:  imasetpreimafvbijlemfo  47444  fundcmpsurbijinjpreimafv  47446
  Copyright terms: Public domain W3C validator