| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setpreimafvex | Structured version Visualization version GIF version | ||
| Description: The class 𝑃 of all preimages of function values is a set. (Contributed by AV, 10-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| setpreimafvex | ⊢ (𝐴 ∈ 𝑉 → 𝑃 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setpreimafvex.p | . 2 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | abrexexg 7893 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∈ V) | |
| 3 | 1, 2 | eqeltrid 2835 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑃 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 Vcvv 3436 {csn 4573 ◡ccnv 5613 “ cima 5617 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-rep 5215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 |
| This theorem is referenced by: fundcmpsurbijinjpreimafv 47506 |
| Copyright terms: Public domain | W3C validator |