| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setpreimafvex | Structured version Visualization version GIF version | ||
| Description: The class 𝑃 of all preimages of function values is a set. (Contributed by AV, 10-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| setpreimafvex | ⊢ (𝐴 ∈ 𝑉 → 𝑃 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setpreimafvex.p | . 2 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | abrexexg 7964 | . 2 ⊢ (𝐴 ∈ 𝑉 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} ∈ V) | |
| 3 | 1, 2 | eqeltrid 2839 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑃 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 Vcvv 3464 {csn 4606 ◡ccnv 5658 “ cima 5662 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-rep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-v 3466 |
| This theorem is referenced by: fundcmpsurbijinjpreimafv 47388 |
| Copyright terms: Public domain | W3C validator |