MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0OLDOLD Structured version   Visualization version   GIF version

Theorem eq0OLDOLD 4347
Description: Obsolete version of eq0 4343 as of 28-Jun-2024. (Contributed by NM, 29-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eq0OLDOLD (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eq0OLDOLD
StepHypRef Expression
1 nfcv 2902 . 2 𝑥𝐴
21eq0f 4340 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1538   = wceq 1540  wcel 2105  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-dif 3951  df-nul 4323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator