MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eq0OLDOLD Structured version   Visualization version   GIF version

Theorem eq0OLDOLD 4278
Description: Obsolete version of eq0 4274 as of 28-Jun-2024. (Contributed by NM, 29-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eq0OLDOLD (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eq0OLDOLD
StepHypRef Expression
1 nfcv 2906 . 2 𝑥𝐴
21eq0f 4271 1 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1537   = wceq 1539  wcel 2108  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-dif 3886  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator