MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neq0OLD Structured version   Visualization version   GIF version

Theorem neq0OLD 4343
Description: Obsolete version of neq0 4340 as of 28-Jun-2024. (Contributed by NM, 21-Jun-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
neq0OLD 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem neq0OLD
StepHypRef Expression
1 nfcv 2897 . 2 𝑥𝐴
21neq0f 4336 1 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wex 1773  wcel 2098  c0 4317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-dif 3946  df-nul 4318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator