MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsbc2 Structured version   Visualization version   GIF version

Theorem eqsbc2 3785
Description: Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
Assertion
Ref Expression
eqsbc2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem eqsbc2
StepHypRef Expression
1 eqsbc1 3765 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
2 eqcom 2745 . . 3 (𝐵 = 𝑥𝑥 = 𝐵)
32sbcbii 3776 . 2 ([𝐴 / 𝑥]𝐵 = 𝑥[𝐴 / 𝑥]𝑥 = 𝐵)
4 eqcom 2745 . 2 (𝐵 = 𝐴𝐴 = 𝐵)
51, 3, 43bitr4g 314 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3717
This theorem is referenced by:  sbcoreleleq  42155  sbcoreleleqVD  42479
  Copyright terms: Public domain W3C validator