MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsbc2 Structured version   Visualization version   GIF version

Theorem eqsbc2 3873
Description: Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
Assertion
Ref Expression
eqsbc2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem eqsbc2
StepHypRef Expression
1 eqsbc1 3854 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
2 eqcom 2747 . . 3 (𝐵 = 𝑥𝑥 = 𝐵)
32sbcbii 3865 . 2 ([𝐴 / 𝑥]𝐵 = 𝑥[𝐴 / 𝑥]𝑥 = 𝐵)
4 eqcom 2747 . 2 (𝐵 = 𝐴𝐴 = 𝐵)
51, 3, 43bitr4g 314 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥𝐵 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805
This theorem is referenced by:  sbcoreleleq  44506  sbcoreleleqVD  44830
  Copyright terms: Public domain W3C validator