![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsbc2 | Structured version Visualization version GIF version |
Description: Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
Ref | Expression |
---|---|
eqsbc2 | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsbc1 3826 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | eqcom 2735 | . . 3 ⊢ (𝐵 = 𝑥 ↔ 𝑥 = 𝐵) | |
3 | 2 | sbcbii 3837 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐵) |
4 | eqcom 2735 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | 1, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-sbc 3777 |
This theorem is referenced by: sbcoreleleq 43974 sbcoreleleqVD 44298 |
Copyright terms: Public domain | W3C validator |