![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsbc2 | Structured version Visualization version GIF version |
Description: Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
Ref | Expression |
---|---|
eqsbc2 | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsbc1 3854 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | eqcom 2747 | . . 3 ⊢ (𝐵 = 𝑥 ↔ 𝑥 = 𝐵) | |
3 | 2 | sbcbii 3865 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐵) |
4 | eqcom 2747 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | 1, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: sbcoreleleq 44506 sbcoreleleqVD 44830 |
Copyright terms: Public domain | W3C validator |