| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbc3an | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbc3an | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcan 3815 | . . 3 ⊢ ([𝐴 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝐴 / 𝑥]𝜒)) | |
| 2 | sbcan 3815 | . . 3 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | |
| 3 | 1, 2 | bianbi 627 | . 2 ⊢ ([𝐴 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒)) |
| 4 | df-3an 1088 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 5 | 4 | sbcbii 3822 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ [𝐴 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒)) |
| 6 | df-3an 1088 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒)) | |
| 7 | 3, 5, 6 | 3bitr4i 303 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-sbc 3766 |
| This theorem is referenced by: csbfrecsg 8281 bnj156 34705 bnj206 34708 bnj976 34754 bnj121 34847 bnj130 34851 bnj581 34885 bnj1040 34949 topdifinffinlem 37311 rdgeqoa 37334 cdlemkid3N 40898 cdlemkid4 40899 minregex 43505 |
| Copyright terms: Public domain | W3C validator |