![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbc3an | Structured version Visualization version GIF version |
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.) |
Ref | Expression |
---|---|
sbc3an | ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1090 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 1 | sbcbii 3838 | . . 3 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ [𝐴 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒)) |
3 | sbcan 3830 | . . 3 ⊢ ([𝐴 / 𝑥]((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝐴 / 𝑥]𝜒)) | |
4 | sbcan 3830 | . . . 4 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓)) | |
5 | 4 | anbi1i 625 | . . 3 ⊢ (([𝐴 / 𝑥](𝜑 ∧ 𝜓) ∧ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒)) |
6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒)) |
7 | df-3an 1090 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒)) | |
8 | 6, 7 | bitr4i 278 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝐴 / 𝑥]𝜓 ∧ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-sbc 3779 |
This theorem is referenced by: csbfrecsg 8269 bnj156 33770 bnj206 33773 bnj976 33819 bnj121 33912 bnj130 33916 bnj581 33950 bnj1040 34014 topdifinffinlem 36276 rdgeqoa 36299 cdlemkid3N 39852 cdlemkid4 39853 minregex 42333 |
Copyright terms: Public domain | W3C validator |