MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc3an Structured version   Visualization version   GIF version

Theorem sbc3an 3821
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbc3an ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))

Proof of Theorem sbc3an
StepHypRef Expression
1 sbcan 3806 . . 3 ([𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∧ [𝐴 / 𝑥]𝜒))
2 sbcan 3806 . . 3 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
31, 2bianbi 627 . 2 ([𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
4 df-3an 1088 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
54sbcbii 3813 . 2 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ [𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒))
6 df-3an 1088 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
73, 5, 63bitr4i 303 1 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  [wsbc 3756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-sbc 3757
This theorem is referenced by:  csbfrecsg  8266  bnj156  34725  bnj206  34728  bnj976  34774  bnj121  34867  bnj130  34871  bnj581  34905  bnj1040  34969  topdifinffinlem  37342  rdgeqoa  37365  cdlemkid3N  40934  cdlemkid4  40935  minregex  43530
  Copyright terms: Public domain W3C validator