MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc3an Structured version   Visualization version   GIF version

Theorem sbc3an 3806
Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbc3an ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))

Proof of Theorem sbc3an
StepHypRef Expression
1 sbcan 3791 . . 3 ([𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ ([𝐴 / 𝑥](𝜑𝜓) ∧ [𝐴 / 𝑥]𝜒))
2 sbcan 3791 . . 3 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
31, 2bianbi 627 . 2 ([𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
4 df-3an 1088 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
54sbcbii 3798 . 2 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ [𝐴 / 𝑥]((𝜑𝜓) ∧ 𝜒))
6 df-3an 1088 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ∧ [𝐴 / 𝑥]𝜒))
73, 5, 63bitr4i 303 1 ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  [wsbc 3741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-sbc 3742
This theorem is referenced by:  csbfrecsg  8214  bnj156  34735  bnj206  34738  bnj976  34784  bnj121  34877  bnj130  34881  bnj581  34915  bnj1040  34979  topdifinffinlem  37380  rdgeqoa  37403  cdlemkid3N  40971  cdlemkid4  40972  minregex  43566
  Copyright terms: Public domain W3C validator