![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsbc3r | Structured version Visualization version GIF version |
Description: eqsbc3 3691 with setvar variable on right side of equals sign. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
Ref | Expression |
---|---|
eqsbc3r | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsbc3 3691 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | eqcom 2784 | . . 3 ⊢ (𝐵 = 𝑥 ↔ 𝑥 = 𝐵) | |
3 | 2 | sbcbii 3702 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐵) |
4 | eqcom 2784 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | 1, 3, 4 | 3bitr4g 306 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1601 ∈ wcel 2106 [wsbc 3651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-12 2162 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-v 3399 df-sbc 3652 |
This theorem is referenced by: sbcoreleleq 39677 sbcoreleleqVD 40010 |
Copyright terms: Public domain | W3C validator |