![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsbc3 | Structured version Visualization version GIF version |
Description: Substitution applied to an atomic wff. Class version of eqsb3 2909. (Contributed by Andrew Salmon, 29-Jun-2011.) Avoid ax-13 2344. (Revised by Wolf Lammen, 29-Apr-2023.) |
Ref | Expression |
---|---|
eqsbc3 | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3711 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | |
2 | eqeq1 2799 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | sbsbc 3713 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ [𝑦 / 𝑥]𝑥 = 𝐵) | |
4 | eqsb3 2909 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ 𝑦 = 𝐵) | |
5 | 3, 4 | bitr3i 278 | . 2 ⊢ ([𝑦 / 𝑥]𝑥 = 𝐵 ↔ 𝑦 = 𝐵) |
6 | 1, 2, 5 | vtoclbg 3511 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 [wsb 2042 ∈ wcel 2081 [wsbc 3709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-sbc 3710 |
This theorem is referenced by: sbceqal 3767 eqsbc3r 3769 fmptsnd 6799 fvmptnn04if 21146 snfil 22161 f1omptsnlem 34173 mptsnunlem 34175 topdifinffinlem 34184 relowlpssretop 34201 iotavalb 40325 onfrALTlem5 40440 eqsbc3rVD 40738 onfrALTlem5VD 40783 |
Copyright terms: Public domain | W3C validator |