Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwiuncl Structured version   Visualization version   GIF version

Theorem elpwiuncl 32345
Description: Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020.)
Hypotheses
Ref Expression
elpwiuncl.1 (𝜑𝐴𝑉)
elpwiuncl.2 ((𝜑𝑘𝐴) → 𝐵 ∈ 𝒫 𝐶)
Assertion
Ref Expression
elpwiuncl (𝜑 𝑘𝐴 𝐵 ∈ 𝒫 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem elpwiuncl
StepHypRef Expression
1 elpwiuncl.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ 𝒫 𝐶)
21elpwid 4615 . . . 4 ((𝜑𝑘𝐴) → 𝐵𝐶)
32ralrimiva 3143 . . 3 (𝜑 → ∀𝑘𝐴 𝐵𝐶)
4 iunss 5052 . . 3 ( 𝑘𝐴 𝐵𝐶 ↔ ∀𝑘𝐴 𝐵𝐶)
53, 4sylibr 233 . 2 (𝜑 𝑘𝐴 𝐵𝐶)
6 elpwiuncl.1 . . . 4 (𝜑𝐴𝑉)
71ralrimiva 3143 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ 𝒫 𝐶)
86, 7jca 510 . . 3 (𝜑 → (𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ 𝒫 𝐶))
9 iunexg 7973 . . 3 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ 𝒫 𝐶) → 𝑘𝐴 𝐵 ∈ V)
10 elpwg 4609 . . 3 ( 𝑘𝐴 𝐵 ∈ V → ( 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 𝑘𝐴 𝐵𝐶))
118, 9, 103syl 18 . 2 (𝜑 → ( 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 𝑘𝐴 𝐵𝐶))
125, 11mpbird 256 1 (𝜑 𝑘𝐴 𝐵 ∈ 𝒫 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  wral 3058  Vcvv 3473  wss 3949  𝒫 cpw 4606   ciun 5000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-v 3475  df-in 3956  df-ss 3966  df-pw 4608  df-uni 4913  df-iun 5002
This theorem is referenced by:  carsggect  33971  carsgclctunlem2  33972
  Copyright terms: Public domain W3C validator