| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwiuncl | Structured version Visualization version GIF version | ||
| Description: Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020.) |
| Ref | Expression |
|---|---|
| elpwiuncl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elpwiuncl.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝒫 𝐶) |
| Ref | Expression |
|---|---|
| elpwiuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwiuncl.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝒫 𝐶) | |
| 2 | 1 | elpwid 4589 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
| 3 | 2 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 4 | iunss 5025 | . . 3 ⊢ (∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
| 5 | 3, 4 | sylibr 234 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶) |
| 6 | elpwiuncl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | 1 | ralrimiva 3133 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) |
| 8 | 6, 7 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶)) |
| 9 | iunexg 7970 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ V) | |
| 10 | elpwg 4583 | . . 3 ⊢ (∪ 𝑘 ∈ 𝐴 𝐵 ∈ V → (∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶)) | |
| 11 | 8, 9, 10 | 3syl 18 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶)) |
| 12 | 5, 11 | mpbird 257 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 ⊆ wss 3931 𝒫 cpw 4580 ∪ ciun 4971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-v 3465 df-ss 3948 df-pw 4582 df-uni 4888 df-iun 4973 |
| This theorem is referenced by: carsggect 34279 carsgclctunlem2 34280 |
| Copyright terms: Public domain | W3C validator |