Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwiuncl Structured version   Visualization version   GIF version

Theorem elpwiuncl 32570
Description: Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020.)
Hypotheses
Ref Expression
elpwiuncl.1 (𝜑𝐴𝑉)
elpwiuncl.2 ((𝜑𝑘𝐴) → 𝐵 ∈ 𝒫 𝐶)
Assertion
Ref Expression
elpwiuncl (𝜑 𝑘𝐴 𝐵 ∈ 𝒫 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem elpwiuncl
StepHypRef Expression
1 elpwiuncl.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ 𝒫 𝐶)
21elpwid 4617 . . . 4 ((𝜑𝑘𝐴) → 𝐵𝐶)
32ralrimiva 3146 . . 3 (𝜑 → ∀𝑘𝐴 𝐵𝐶)
4 iunss 5053 . . 3 ( 𝑘𝐴 𝐵𝐶 ↔ ∀𝑘𝐴 𝐵𝐶)
53, 4sylibr 234 . 2 (𝜑 𝑘𝐴 𝐵𝐶)
6 elpwiuncl.1 . . . 4 (𝜑𝐴𝑉)
71ralrimiva 3146 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ 𝒫 𝐶)
86, 7jca 511 . . 3 (𝜑 → (𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ 𝒫 𝐶))
9 iunexg 7996 . . 3 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ 𝒫 𝐶) → 𝑘𝐴 𝐵 ∈ V)
10 elpwg 4611 . . 3 ( 𝑘𝐴 𝐵 ∈ V → ( 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 𝑘𝐴 𝐵𝐶))
118, 9, 103syl 18 . 2 (𝜑 → ( 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 𝑘𝐴 𝐵𝐶))
125, 11mpbird 257 1 (𝜑 𝑘𝐴 𝐵 ∈ 𝒫 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3061  Vcvv 3481  wss 3966  𝒫 cpw 4608   ciun 4999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-v 3483  df-ss 3983  df-pw 4610  df-uni 4916  df-iun 5001
This theorem is referenced by:  carsggect  34314  carsgclctunlem2  34315
  Copyright terms: Public domain W3C validator