![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwiuncl | Structured version Visualization version GIF version |
Description: Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020.) |
Ref | Expression |
---|---|
elpwiuncl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elpwiuncl.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝒫 𝐶) |
Ref | Expression |
---|---|
elpwiuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwiuncl.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝒫 𝐶) | |
2 | 1 | elpwid 4631 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
3 | 2 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶) |
4 | iunss 5068 | . . 3 ⊢ (∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
5 | 3, 4 | sylibr 234 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶) |
6 | elpwiuncl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | 1 | ralrimiva 3152 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) |
8 | 6, 7 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶)) |
9 | iunexg 8006 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ V) | |
10 | elpwg 4625 | . . 3 ⊢ (∪ 𝑘 ∈ 𝐴 𝐵 ∈ V → (∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶)) | |
11 | 8, 9, 10 | 3syl 18 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶)) |
12 | 5, 11 | mpbird 257 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-pw 4624 df-uni 4932 df-iun 5017 |
This theorem is referenced by: carsggect 34285 carsgclctunlem2 34286 |
Copyright terms: Public domain | W3C validator |