Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpwiuncl Structured version   Visualization version   GIF version

Theorem elpwiuncl 32559
Description: Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020.)
Hypotheses
Ref Expression
elpwiuncl.1 (𝜑𝐴𝑉)
elpwiuncl.2 ((𝜑𝑘𝐴) → 𝐵 ∈ 𝒫 𝐶)
Assertion
Ref Expression
elpwiuncl (𝜑 𝑘𝐴 𝐵 ∈ 𝒫 𝐶)
Distinct variable groups:   𝐴,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem elpwiuncl
StepHypRef Expression
1 elpwiuncl.2 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ 𝒫 𝐶)
21elpwid 4631 . . . 4 ((𝜑𝑘𝐴) → 𝐵𝐶)
32ralrimiva 3152 . . 3 (𝜑 → ∀𝑘𝐴 𝐵𝐶)
4 iunss 5068 . . 3 ( 𝑘𝐴 𝐵𝐶 ↔ ∀𝑘𝐴 𝐵𝐶)
53, 4sylibr 234 . 2 (𝜑 𝑘𝐴 𝐵𝐶)
6 elpwiuncl.1 . . . 4 (𝜑𝐴𝑉)
71ralrimiva 3152 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ 𝒫 𝐶)
86, 7jca 511 . . 3 (𝜑 → (𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ 𝒫 𝐶))
9 iunexg 8006 . . 3 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ 𝒫 𝐶) → 𝑘𝐴 𝐵 ∈ V)
10 elpwg 4625 . . 3 ( 𝑘𝐴 𝐵 ∈ V → ( 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 𝑘𝐴 𝐵𝐶))
118, 9, 103syl 18 . 2 (𝜑 → ( 𝑘𝐴 𝐵 ∈ 𝒫 𝐶 𝑘𝐴 𝐵𝐶))
125, 11mpbird 257 1 (𝜑 𝑘𝐴 𝐵 ∈ 𝒫 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  Vcvv 3488  wss 3976  𝒫 cpw 4622   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-pw 4624  df-uni 4932  df-iun 5017
This theorem is referenced by:  carsggect  34285  carsgclctunlem2  34286
  Copyright terms: Public domain W3C validator