![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwiuncl | Structured version Visualization version GIF version |
Description: Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020.) |
Ref | Expression |
---|---|
elpwiuncl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elpwiuncl.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝒫 𝐶) |
Ref | Expression |
---|---|
elpwiuncl | ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwiuncl.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝒫 𝐶) | |
2 | 1 | elpwid 4612 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
3 | 2 | ralrimiva 3145 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶) |
4 | iunss 5049 | . . 3 ⊢ (∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶) | |
5 | 3, 4 | sylibr 233 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶) |
6 | elpwiuncl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
7 | 1 | ralrimiva 3145 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) |
8 | 6, 7 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶)) |
9 | iunexg 7953 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ V) | |
10 | elpwg 4606 | . . 3 ⊢ (∪ 𝑘 ∈ 𝐴 𝐵 ∈ V → (∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶)) | |
11 | 8, 9, 10 | 3syl 18 | . 2 ⊢ (𝜑 → (∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶 ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ 𝐶)) |
12 | 5, 11 | mpbird 256 | 1 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝒫 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 ⊆ wss 3949 𝒫 cpw 4603 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-v 3475 df-in 3956 df-ss 3966 df-pw 4605 df-uni 4910 df-iun 5000 |
This theorem is referenced by: carsggect 33612 carsgclctunlem2 33613 |
Copyright terms: Public domain | W3C validator |