|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpreq | Structured version Visualization version GIF version | ||
| Description: Equality wihin a pair. (Contributed by Thierry Arnoux, 23-Aug-2017.) | 
| Ref | Expression | 
|---|---|
| elpreq.1 | ⊢ (𝜑 → 𝑋 ∈ {𝐴, 𝐵}) | 
| elpreq.2 | ⊢ (𝜑 → 𝑌 ∈ {𝐴, 𝐵}) | 
| elpreq.3 | ⊢ (𝜑 → (𝑋 = 𝐴 ↔ 𝑌 = 𝐴)) | 
| Ref | Expression | 
|---|---|
| elpreq | ⊢ (𝜑 → 𝑋 = 𝑌) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 = 𝐴) | |
| 2 | elpreq.3 | . . . 4 ⊢ (𝜑 → (𝑋 = 𝐴 ↔ 𝑌 = 𝐴)) | |
| 3 | 2 | biimpa 476 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑌 = 𝐴) | 
| 4 | 1, 3 | eqtr4d 2780 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝐴) → 𝑋 = 𝑌) | 
| 5 | elpreq.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ {𝐴, 𝐵}) | |
| 6 | elpri 4649 | . . . . 5 ⊢ (𝑋 ∈ {𝐴, 𝐵} → (𝑋 = 𝐴 ∨ 𝑋 = 𝐵)) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 = 𝐴 ∨ 𝑋 = 𝐵)) | 
| 8 | 7 | orcanai 1005 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = 𝐴) → 𝑋 = 𝐵) | 
| 9 | simpl 482 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑋 = 𝐴) → 𝜑) | |
| 10 | 2 | notbid 318 | . . . . 5 ⊢ (𝜑 → (¬ 𝑋 = 𝐴 ↔ ¬ 𝑌 = 𝐴)) | 
| 11 | 10 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑋 = 𝐴) → ¬ 𝑌 = 𝐴) | 
| 12 | elpreq.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ {𝐴, 𝐵}) | |
| 13 | elpri 4649 | . . . . 5 ⊢ (𝑌 ∈ {𝐴, 𝐵} → (𝑌 = 𝐴 ∨ 𝑌 = 𝐵)) | |
| 14 | pm2.53 852 | . . . . 5 ⊢ ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → (¬ 𝑌 = 𝐴 → 𝑌 = 𝐵)) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . 4 ⊢ (𝜑 → (¬ 𝑌 = 𝐴 → 𝑌 = 𝐵)) | 
| 16 | 9, 11, 15 | sylc 65 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = 𝐴) → 𝑌 = 𝐵) | 
| 17 | 8, 16 | eqtr4d 2780 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = 𝐴) → 𝑋 = 𝑌) | 
| 18 | 4, 17 | pm2.61dan 813 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 {cpr 4628 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-un 3956 df-sn 4627 df-pr 4629 | 
| This theorem is referenced by: indpreima 32850 | 
| Copyright terms: Public domain | W3C validator |