Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ringidl Structured version   Visualization version   GIF version

Theorem 0ringidl 31273
Description: The zero ideal is the only ideal of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024.)
Hypotheses
Ref Expression
0ringidl.1 𝐵 = (Base‘𝑅)
0ringidl.2 0 = (0g𝑅)
Assertion
Ref Expression
0ringidl ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) = {{ 0 }})

Proof of Theorem 0ringidl
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 0ringidl.1 . . . . . 6 𝐵 = (Base‘𝑅)
2 eqid 2736 . . . . . 6 (LIdeal‘𝑅) = (LIdeal‘𝑅)
31, 2lidlss 20202 . . . . 5 (𝑖 ∈ (LIdeal‘𝑅) → 𝑖𝐵)
43adantl 485 . . . 4 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝑖𝐵)
5 0ringidl.2 . . . . . 6 0 = (0g𝑅)
61, 50ring 20262 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 })
76adantr 484 . . . 4 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝐵 = { 0 })
84, 7sseqtrd 3927 . . 3 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ⊆ { 0 })
92, 5lidl0cl 20204 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 0𝑖)
109adantlr 715 . . . 4 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 0𝑖)
1110snssd 4708 . . 3 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → { 0 } ⊆ 𝑖)
128, 11eqssd 3904 . 2 (((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 = { 0 })
132, 5lidl0 20211 . . 3 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
1413adantr 484 . 2 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → { 0 } ∈ (LIdeal‘𝑅))
1512, 14eqsnd 30550 1 ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → (LIdeal‘𝑅) = {{ 0 }})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wss 3853  {csn 4527  cfv 6358  1c1 10695  chash 13861  Basecbs 16666  0gc0g 16898  Ringcrg 19516  LIdealclidl 20161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-hash 13862  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-ip 16767  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-minusg 18323  df-sbg 18324  df-subg 18494  df-mgp 19459  df-ur 19471  df-ring 19518  df-subrg 19752  df-lmod 19855  df-lss 19923  df-sra 20163  df-rgmod 20164  df-lidl 20165
This theorem is referenced by:  0ringprmidl  31293  zar0ring  31496
  Copyright terms: Public domain W3C validator