Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucidALTVD Structured version   Visualization version   GIF version

Theorem sucidALTVD 44373
Description: A set belongs to its successor. Alternate proof of sucid 6446. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucidALT 44374 is sucidALTVD 44373 without virtual deductions and was automatically derived from sucidALTVD 44373. This proof illustrates that completeusersproof.cmd will generate a Metamath proof from any User's Proof which is "conventional" in the sense that no step is a virtual deduction, provided that all necessary unification theorems and transformation deductions are in set.mm. completeusersproof.cmd automatically converts such a conventional proof into a Virtual Deduction proof for which each step happens to be a 0-virtual hypothesis virtual deduction. The user does not need to search for reference theorem labels or deduction labels nor does he(she) need to use theorems and deductions which unify with reference theorems and deductions in set.mm. All that is necessary is that each theorem or deduction of the User's Proof unifies with some reference theorem or deduction in set.mm or is a semantic variation of some theorem or deduction which unifies with some reference theorem or deduction in set.mm. The definition of "semantic variation" has not been precisely defined. If it is obvious that a theorem or deduction has the same meaning as another theorem or deduction, then it is a semantic variation of the latter theorem or deduction. For example, step 4 of the User's Proof is a semantic variation of the definition (axiom) suc 𝐴 = (𝐴 ∪ {𝐴}), which unifies with df-suc 6370, a reference definition (axiom) in set.mm. Also, a theorem or deduction is said to be a semantic variation of another theorem or deduction if it is obvious upon cursory inspection that it has the same meaning as a weaker form of the latter theorem or deduction. For example, the deduction Ord 𝐴 infers 𝑥𝐴𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥) is a semantic variation of the theorem (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥))), which unifies with the set.mm reference definition (axiom) dford2 9641.
h1:: 𝐴 ∈ V
2:1: 𝐴 ∈ {𝐴}
3:2: 𝐴 ∈ ({𝐴} ∪ 𝐴)
4:: suc 𝐴 = ({𝐴} ∪ 𝐴)
qed:3,4: 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sucidALTVD.1 𝐴 ∈ V
Assertion
Ref Expression
sucidALTVD 𝐴 ∈ suc 𝐴

Proof of Theorem sucidALTVD
StepHypRef Expression
1 sucidALTVD.1 . . . 4 𝐴 ∈ V
21snid 4660 . . 3 𝐴 ∈ {𝐴}
3 elun1 4170 . . 3 (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝐴))
42, 3e0a 44275 . 2 𝐴 ∈ ({𝐴} ∪ 𝐴)
5 df-suc 6370 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
65equncomi 4148 . 2 suc 𝐴 = ({𝐴} ∪ 𝐴)
74, 6eleqtrri 2824 1 𝐴 ∈ suc 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Vcvv 3463  cun 3938  {csn 4624  suc csuc 6366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3465  df-un 3945  df-ss 3957  df-sn 4625  df-suc 6370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator