Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucidALTVD Structured version   Visualization version   GIF version

Theorem sucidALTVD 44841
Description: A set belongs to its successor. Alternate proof of sucid 6477. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucidALT 44842 is sucidALTVD 44841 without virtual deductions and was automatically derived from sucidALTVD 44841. This proof illustrates that completeusersproof.cmd will generate a Metamath proof from any User's Proof which is "conventional" in the sense that no step is a virtual deduction, provided that all necessary unification theorems and transformation deductions are in set.mm. completeusersproof.cmd automatically converts such a conventional proof into a Virtual Deduction proof for which each step happens to be a 0-virtual hypothesis virtual deduction. The user does not need to search for reference theorem labels or deduction labels nor does he(she) need to use theorems and deductions which unify with reference theorems and deductions in set.mm. All that is necessary is that each theorem or deduction of the User's Proof unifies with some reference theorem or deduction in set.mm or is a semantic variation of some theorem or deduction which unifies with some reference theorem or deduction in set.mm. The definition of "semantic variation" has not been precisely defined. If it is obvious that a theorem or deduction has the same meaning as another theorem or deduction, then it is a semantic variation of the latter theorem or deduction. For example, step 4 of the User's Proof is a semantic variation of the definition (axiom) suc 𝐴 = (𝐴 ∪ {𝐴}), which unifies with df-suc 6401, a reference definition (axiom) in set.mm. Also, a theorem or deduction is said to be a semantic variation of another theorem or deduction if it is obvious upon cursory inspection that it has the same meaning as a weaker form of the latter theorem or deduction. For example, the deduction Ord 𝐴 infers 𝑥𝐴𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥) is a semantic variation of the theorem (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥))), which unifies with the set.mm reference definition (axiom) dford2 9689.
h1:: 𝐴 ∈ V
2:1: 𝐴 ∈ {𝐴}
3:2: 𝐴 ∈ ({𝐴} ∪ 𝐴)
4:: suc 𝐴 = ({𝐴} ∪ 𝐴)
qed:3,4: 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sucidALTVD.1 𝐴 ∈ V
Assertion
Ref Expression
sucidALTVD 𝐴 ∈ suc 𝐴

Proof of Theorem sucidALTVD
StepHypRef Expression
1 sucidALTVD.1 . . . 4 𝐴 ∈ V
21snid 4684 . . 3 𝐴 ∈ {𝐴}
3 elun1 4205 . . 3 (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝐴))
42, 3e0a 44743 . 2 𝐴 ∈ ({𝐴} ∪ 𝐴)
5 df-suc 6401 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
65equncomi 4183 . 2 suc 𝐴 = ({𝐴} ∪ 𝐴)
74, 6eleqtrri 2843 1 𝐴 ∈ suc 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  cun 3974  {csn 4648  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-ss 3993  df-sn 4649  df-suc 6401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator