MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvf Structured version   Visualization version   GIF version

Theorem eqvf 3451
Description: The universe contains every set. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
eqvf.1 𝑥𝐴
Assertion
Ref Expression
eqvf (𝐴 = V ↔ ∀𝑥 𝑥𝐴)

Proof of Theorem eqvf
StepHypRef Expression
1 eqvf.1 . . 3 𝑥𝐴
2 nfcv 2904 . . 3 𝑥V
31, 2cleqf 2935 . 2 (𝐴 = V ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
4 vex 3445 . . . 4 𝑥 ∈ V
54tbt 369 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ V))
65albii 1820 . 2 (∀𝑥 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
73, 6bitr4i 277 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1538   = wceq 1540  wcel 2105  wnfc 2884  Vcvv 3441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-v 3443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator