MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvf Structured version   Visualization version   GIF version

Theorem eqvf 3482
Description: The universe contains every set. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
eqvf.1 𝑥𝐴
Assertion
Ref Expression
eqvf (𝐴 = V ↔ ∀𝑥 𝑥𝐴)

Proof of Theorem eqvf
StepHypRef Expression
1 eqvf.1 . . 3 𝑥𝐴
2 nfcv 2901 . . 3 𝑥V
31, 2cleqf 2932 . 2 (𝐴 = V ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
4 vex 3476 . . . 4 𝑥 ∈ V
54tbt 368 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ V))
65albii 1819 . 2 (∀𝑥 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
73, 6bitr4i 277 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wcel 2104  wnfc 2881  Vcvv 3472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-v 3474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator