MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleqf Structured version   Visualization version   GIF version

Theorem cleqf 2938
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2731. See also cleqh 2862. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid ax-13 2372. (Revised by Wolf Lammen, 10-May-2023.) Avoid ax-10 2137. (Revised by Gino Giotto, 20-Aug-2023.)
Hypotheses
Ref Expression
cleqf.1 𝑥𝐴
cleqf.2 𝑥𝐵
Assertion
Ref Expression
cleqf (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem cleqf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2731 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1917 . . 3 𝑦(𝑥𝐴𝑥𝐵)
3 cleqf.1 . . . . 5 𝑥𝐴
43nfcri 2894 . . . 4 𝑥 𝑦𝐴
5 cleqf.2 . . . . 5 𝑥𝐵
65nfcri 2894 . . . 4 𝑥 𝑦𝐵
74, 6nfbi 1906 . . 3 𝑥(𝑦𝐴𝑦𝐵)
8 eleq1w 2821 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
9 eleq1w 2821 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
108, 9bibi12d 346 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
112, 7, 10cbvalv1 2338 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
121, 11bitr4i 277 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wcel 2106  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-cleq 2730  df-clel 2816  df-nfc 2889
This theorem is referenced by:  abid2f  2939  abeq2f  2940  eqvf  3442  eqrd  3940  eq0f  4274  iunab  4981  iinab  4997  mbfposr  24816  mbfinf  24829  itg1climres  24879  bnj1366  32809  bj-rabtrALT  35119  bj-rcleqf  35215  compab  42060  ssmapsn  42756  infnsuprnmpt  42796  pimrecltpos  44245  pimrecltneg  44260  smfaddlem1  44298  smflimsuplem7  44359  absnsb  44521
  Copyright terms: Public domain W3C validator