Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cleqf | Structured version Visualization version GIF version |
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2733. See also cleqh 2864. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid ax-13 2374. (Revised by Wolf Lammen, 10-May-2023.) Avoid ax-10 2141. (Revised by Gino Giotto, 20-Aug-2023.) |
Ref | Expression |
---|---|
cleqf.1 | ⊢ Ⅎ𝑥𝐴 |
cleqf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
cleqf | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2733 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | nfv 1921 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | cleqf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2896 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | cleqf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | nfcri 2896 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
7 | 4, 6 | nfbi 1910 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) |
8 | eleq1w 2823 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
9 | eleq1w 2823 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
10 | 8, 9 | bibi12d 346 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵))) |
11 | 2, 7, 10 | cbvalv1 2342 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
12 | 1, 11 | bitr4i 277 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2110 Ⅎwnfc 2889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-nf 1791 df-cleq 2732 df-clel 2818 df-nfc 2891 |
This theorem is referenced by: abid2f 2941 abeq2f 2942 eqvf 3441 eqrd 3945 eq0f 4280 iunab 4986 iinab 5002 mbfposr 24812 mbfinf 24825 itg1climres 24875 bnj1366 32803 bj-rabtrALT 35113 bj-rcleqf 35209 compab 42028 ssmapsn 42724 infnsuprnmpt 42764 pimrecltpos 44212 pimrecltneg 44226 smfaddlem1 44264 smflimsuplem7 44325 absnsb 44487 |
Copyright terms: Public domain | W3C validator |