| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cleqf | Structured version Visualization version GIF version | ||
| Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2729. See also cleqh 2865. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid ax-13 2377. (Revised by Wolf Lammen, 10-May-2023.) Avoid ax-10 2142. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| cleqf.1 | ⊢ Ⅎ𝑥𝐴 |
| cleqf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| cleqf | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2729 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 3 | cleqf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 5 | cleqf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 7 | 4, 6 | nfbi 1903 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) |
| 8 | eleq1w 2818 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 9 | eleq1w 2818 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 10 | 8, 9 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵))) |
| 11 | 2, 7, 10 | cbvalv1 2343 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 12 | 1, 11 | bitr4i 278 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2728 df-clel 2810 df-nfc 2886 |
| This theorem is referenced by: eqabf 2929 abid2fOLD 2931 eqvf 3475 eqrd 3983 eq0f 4327 iunab 5032 iinab 5049 mbfposr 25610 mbfinf 25623 itg1climres 25672 bnj1366 34865 bj-rabtrALT 36954 bj-rcleqf 37048 compab 44441 ssmapsn 45220 infnsuprnmpt 45254 pimrecltpos 46717 pimrecltneg 46733 smfaddlem1 46772 smflimsuplem7 46835 absnsb 47036 |
| Copyright terms: Public domain | W3C validator |