MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleqf Structured version   Visualization version   GIF version

Theorem cleqf 2928
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2729. See also cleqh 2865. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid ax-13 2377. (Revised by Wolf Lammen, 10-May-2023.) Avoid ax-10 2142. (Revised by GG, 20-Aug-2023.)
Hypotheses
Ref Expression
cleqf.1 𝑥𝐴
cleqf.2 𝑥𝐵
Assertion
Ref Expression
cleqf (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem cleqf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2729 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1914 . . 3 𝑦(𝑥𝐴𝑥𝐵)
3 cleqf.1 . . . . 5 𝑥𝐴
43nfcri 2891 . . . 4 𝑥 𝑦𝐴
5 cleqf.2 . . . . 5 𝑥𝐵
65nfcri 2891 . . . 4 𝑥 𝑦𝐵
74, 6nfbi 1903 . . 3 𝑥(𝑦𝐴𝑦𝐵)
8 eleq1w 2818 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
9 eleq1w 2818 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
108, 9bibi12d 345 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
112, 7, 10cbvalv1 2343 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
121, 11bitr4i 278 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538   = wceq 1540  wcel 2109  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-cleq 2728  df-clel 2810  df-nfc 2886
This theorem is referenced by:  eqabf  2929  abid2fOLD  2931  eqvf  3475  eqrd  3983  eq0f  4327  iunab  5032  iinab  5049  mbfposr  25610  mbfinf  25623  itg1climres  25672  bnj1366  34865  bj-rabtrALT  36954  bj-rcleqf  37048  compab  44441  ssmapsn  45220  infnsuprnmpt  45254  pimrecltpos  46717  pimrecltneg  46733  smfaddlem1  46772  smflimsuplem7  46835  absnsb  47036
  Copyright terms: Public domain W3C validator