MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleqf Structured version   Visualization version   GIF version

Theorem cleqf 2932
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2723. See also cleqh 2861. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid ax-13 2369. (Revised by Wolf Lammen, 10-May-2023.) Avoid ax-10 2135. (Revised by Gino Giotto, 20-Aug-2023.)
Hypotheses
Ref Expression
cleqf.1 𝑥𝐴
cleqf.2 𝑥𝐵
Assertion
Ref Expression
cleqf (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem cleqf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2723 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1915 . . 3 𝑦(𝑥𝐴𝑥𝐵)
3 cleqf.1 . . . . 5 𝑥𝐴
43nfcri 2888 . . . 4 𝑥 𝑦𝐴
5 cleqf.2 . . . . 5 𝑥𝐵
65nfcri 2888 . . . 4 𝑥 𝑦𝐵
74, 6nfbi 1904 . . 3 𝑥(𝑦𝐴𝑦𝐵)
8 eleq1w 2814 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
9 eleq1w 2814 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
108, 9bibi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
112, 7, 10cbvalv1 2335 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
121, 11bitr4i 277 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wcel 2104  wnfc 2881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-cleq 2722  df-clel 2808  df-nfc 2883
This theorem is referenced by:  eqabf  2933  abid2fOLD  2935  eqvf  3482  eqrd  4002  eq0f  4341  iunab  5055  iinab  5072  mbfposr  25403  mbfinf  25416  itg1climres  25466  bnj1366  34136  bj-rabtrALT  36116  bj-rcleqf  36211  compab  43505  ssmapsn  44215  infnsuprnmpt  44254  pimrecltpos  45724  pimrecltneg  45740  smfaddlem1  45779  smflimsuplem7  45842  absnsb  46037
  Copyright terms: Public domain W3C validator