MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleqf Structured version   Visualization version   GIF version

Theorem cleqf 2983
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2792. See also cleqh 2913. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid ax-13 2379. (Revised by Wolf Lammen, 10-May-2023.) Avoid ax-10 2142. (Revised by Gino Giotto, 20-Aug-2023.)
Hypotheses
Ref Expression
cleqf.1 𝑥𝐴
cleqf.2 𝑥𝐵
Assertion
Ref Expression
cleqf (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem cleqf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2792 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1915 . . 3 𝑦(𝑥𝐴𝑥𝐵)
3 cleqf.1 . . . . 5 𝑥𝐴
43nfcri 2943 . . . 4 𝑥 𝑦𝐴
5 cleqf.2 . . . . 5 𝑥𝐵
65nfcri 2943 . . . 4 𝑥 𝑦𝐵
74, 6nfbi 1904 . . 3 𝑥(𝑦𝐴𝑦𝐵)
8 eleq1w 2872 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
9 eleq1w 2872 . . . 4 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
108, 9bibi12d 349 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐵) ↔ (𝑦𝐴𝑦𝐵)))
112, 7, 10cbvalv1 2350 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
121, 11bitr4i 281 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wal 1536   = wceq 1538  wcel 2111  wnfc 2936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-cleq 2791  df-clel 2870  df-nfc 2938
This theorem is referenced by:  abid2f  2984  abeq2f  2985  eqvf  3450  eqrd  3934  eq0f  4255  iunab  4938  iinab  4953  mbfposr  24256  mbfinf  24269  itg1climres  24318  bnj1366  32211  bj-rabtrALT  34373  bj-rcleqf  34461  compab  41146  ssmapsn  41845  infnsuprnmpt  41888  pimrecltpos  43344  pimrecltneg  43358  smfaddlem1  43396  smflimsuplem7  43457  absnsb  43619
  Copyright terms: Public domain W3C validator