![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cleqf | Structured version Visualization version GIF version |
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2718. See also cleqh 2855. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid ax-13 2365. (Revised by Wolf Lammen, 10-May-2023.) Avoid ax-10 2129. (Revised by GG, 20-Aug-2023.) |
Ref | Expression |
---|---|
cleqf.1 | ⊢ Ⅎ𝑥𝐴 |
cleqf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
cleqf | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2718 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | nfv 1909 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | cleqf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2882 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | cleqf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | nfcri 2882 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
7 | 4, 6 | nfbi 1898 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) |
8 | eleq1w 2808 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
9 | eleq1w 2808 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
10 | 8, 9 | bibi12d 344 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵))) |
11 | 2, 7, 10 | cbvalv1 2331 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
12 | 1, 11 | bitr4i 277 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1531 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-cleq 2717 df-clel 2802 df-nfc 2877 |
This theorem is referenced by: eqabf 2924 abid2fOLD 2926 eqvf 3471 eqrd 3996 eq0f 4340 iunab 5055 iinab 5072 mbfposr 25630 mbfinf 25643 itg1climres 25693 bnj1366 34593 bj-rabtrALT 36542 bj-rcleqf 36637 compab 44023 ssmapsn 44730 infnsuprnmpt 44766 pimrecltpos 46236 pimrecltneg 46252 smfaddlem1 46291 smflimsuplem7 46354 absnsb 46549 |
Copyright terms: Public domain | W3C validator |