![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cleqf | Structured version Visualization version GIF version |
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq 2723. See also cleqh 2861. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.) Avoid ax-13 2369. (Revised by Wolf Lammen, 10-May-2023.) Avoid ax-10 2135. (Revised by Gino Giotto, 20-Aug-2023.) |
Ref | Expression |
---|---|
cleqf.1 | ⊢ Ⅎ𝑥𝐴 |
cleqf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
cleqf | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2723 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | |
2 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | cleqf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2888 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | cleqf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | nfcri 2888 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
7 | 4, 6 | nfbi 1904 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵) |
8 | eleq1w 2814 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
9 | eleq1w 2814 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
10 | 8, 9 | bibi12d 344 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵))) |
11 | 2, 7, 10 | cbvalv1 2335 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
12 | 1, 11 | bitr4i 277 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2104 Ⅎwnfc 2881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-cleq 2722 df-clel 2808 df-nfc 2883 |
This theorem is referenced by: eqabf 2933 abid2fOLD 2935 eqvf 3482 eqrd 4002 eq0f 4341 iunab 5055 iinab 5072 mbfposr 25403 mbfinf 25416 itg1climres 25466 bnj1366 34136 bj-rabtrALT 36116 bj-rcleqf 36211 compab 43505 ssmapsn 44215 infnsuprnmpt 44254 pimrecltpos 45724 pimrecltneg 45740 smfaddlem1 45779 smflimsuplem7 45842 absnsb 46037 |
Copyright terms: Public domain | W3C validator |