Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eu4 | Structured version Visualization version GIF version |
Description: Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
eu4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
eu4 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2567 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | eu4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | mo4 2564 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
4 | 3 | anbi2i 624 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
5 | 1, 4 | bitri 275 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 ∃wex 1779 ∃*wmo 2536 ∃!weu 2566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-mo 2538 df-eu 2567 |
This theorem is referenced by: euind 3664 eqeuel 4302 uniintsn 4925 eusv1 5323 omeu 8447 eroveu 8632 climeu 15309 pceu 16592 initoeu2lem2 17775 psgneu 19159 gsumval3eu 19550 frgr3vlem2 28683 3vfriswmgrlem 28686 unirep 35915 rlimdmafv 44727 rlimdmafv2 44808 |
Copyright terms: Public domain | W3C validator |