MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eu4 Structured version   Visualization version   GIF version

Theorem eu4 2618
Description: Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
eu4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
eu4 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem eu4
StepHypRef Expression
1 df-eu 2572 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
2 eu4.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32mo4 2569 . . 3 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
43anbi2i 622 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
51, 4bitri 275 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1777  ∃*wmo 2541  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-eu 2572
This theorem is referenced by:  euind  3746  eqeuel  4388  uniintsn  5009  eusv1  5409  omeu  8641  eroveu  8870  climeu  15601  pceu  16893  initoeu2lem2  18082  psgneu  19548  gsumval3eu  19946  frgr3vlem2  30306  3vfriswmgrlem  30309  unirep  37674  rlimdmafv  47092  rlimdmafv2  47173
  Copyright terms: Public domain W3C validator