MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eu4 Structured version   Visualization version   GIF version

Theorem eu4 2609
Description: Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
eu4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
eu4 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem eu4
StepHypRef Expression
1 df-eu 2563 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
2 eu4.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32mo4 2560 . . 3 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
43anbi2i 623 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
51, 4bitri 275 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  ∃*wmo 2532  ∃!weu 2562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2534  df-eu 2563
This theorem is referenced by:  euind  3698  eqeuel  4331  uniintsn  4952  eusv1  5349  omeu  8552  eroveu  8788  climeu  15528  pceu  16824  initoeu2lem2  17984  psgneu  19443  gsumval3eu  19841  frgr3vlem2  30210  3vfriswmgrlem  30213  unirep  37715  rlimdmafv  47182  rlimdmafv2  47263
  Copyright terms: Public domain W3C validator