![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eu4 | Structured version Visualization version GIF version |
Description: Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
eu4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
eu4 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2557 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
2 | eu4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | mo4 2554 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
4 | 3 | anbi2i 621 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
5 | 1, 4 | bitri 274 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 ∃wex 1773 ∃*wmo 2526 ∃!weu 2556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1774 df-mo 2528 df-eu 2557 |
This theorem is referenced by: euind 3716 eqeuel 4362 uniintsn 4991 eusv1 5391 omeu 8606 eroveu 8831 climeu 15535 pceu 16818 initoeu2lem2 18007 psgneu 19473 gsumval3eu 19871 frgr3vlem2 30156 3vfriswmgrlem 30159 unirep 37318 rlimdmafv 46695 rlimdmafv2 46776 |
Copyright terms: Public domain | W3C validator |