MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eubid Structured version   Visualization version   GIF version

Theorem eubid 2587
Description: Formula-building rule for the unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) (Proof shortened by Wolf Lammen, 19-Feb-2023.)
Hypotheses
Ref Expression
eubid.1 𝑥𝜑
eubid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eubid (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))

Proof of Theorem eubid
StepHypRef Expression
1 eubid.1 . . 3 𝑥𝜑
2 eubid.2 . . 3 (𝜑 → (𝜓𝜒))
31, 2alrimi 2209 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
4 eubi 2584 . 2 (∀𝑥(𝜓𝜒) → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
53, 4syl 17 1 (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788  df-mo 2540  df-eu 2569
This theorem is referenced by:  euor  2613  euor2  2615  euan  2623  reubida  3313  reueq1f  3325  eusv2i  5312  reusv2lem3  5318  eubiOLD  41943
  Copyright terms: Public domain W3C validator