MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ss Structured version   Visualization version   GIF version

Theorem ex-ss 30230
Description: Example for df-ss 3962. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-ss {1, 2} ⊆ {1, 2, 3}

Proof of Theorem ex-ss
StepHypRef Expression
1 ssun1 4168 . 2 {1, 2} ⊆ ({1, 2} ∪ {3})
2 df-tp 4629 . 2 {1, 2, 3} = ({1, 2} ∪ {3})
31, 2sseqtrri 4015 1 {1, 2} ⊆ {1, 2, 3}
Colors of variables: wff setvar class
Syntax hints:  cun 3943  wss 3945  {csn 4624  {cpr 4626  {ctp 4628  1c1 11133  2c2 12291  3c3 12292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-un 3950  df-in 3952  df-ss 3962  df-tp 4629
This theorem is referenced by:  ex-pss  30231
  Copyright terms: Public domain W3C validator