MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ss Structured version   Visualization version   GIF version

Theorem ex-ss 29669
Description: Example for df-ss 3964. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-ss {1, 2} ⊆ {1, 2, 3}

Proof of Theorem ex-ss
StepHypRef Expression
1 ssun1 4171 . 2 {1, 2} ⊆ ({1, 2} ∪ {3})
2 df-tp 4632 . 2 {1, 2, 3} = ({1, 2} ∪ {3})
31, 2sseqtrri 4018 1 {1, 2} ⊆ {1, 2, 3}
Colors of variables: wff setvar class
Syntax hints:  cun 3945  wss 3947  {csn 4627  {cpr 4629  {ctp 4631  1c1 11107  2c2 12263  3c3 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3952  df-in 3954  df-ss 3964  df-tp 4632
This theorem is referenced by:  ex-pss  29670
  Copyright terms: Public domain W3C validator