MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ss Structured version   Visualization version   GIF version

Theorem ex-ss 30409
Description: Example for df-ss 3915. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-ss {1, 2} ⊆ {1, 2, 3}

Proof of Theorem ex-ss
StepHypRef Expression
1 ssun1 4127 . 2 {1, 2} ⊆ ({1, 2} ∪ {3})
2 df-tp 4580 . 2 {1, 2, 3} = ({1, 2} ∪ {3})
31, 2sseqtrri 3980 1 {1, 2} ⊆ {1, 2, 3}
Colors of variables: wff setvar class
Syntax hints:  cun 3896  wss 3898  {csn 4575  {cpr 4577  {ctp 4579  1c1 11014  2c2 12187  3c3 12188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-ss 3915  df-tp 4580
This theorem is referenced by:  ex-pss  30410
  Copyright terms: Public domain W3C validator