| Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | ||
| Mirrors > Home > MPE Home > Th. List > ex-ss | Structured version Visualization version GIF version | ||
| Description: Example for df-ss 3967. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) | 
| Ref | Expression | 
|---|---|
| ex-ss | ⊢ {1, 2} ⊆ {1, 2, 3} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssun1 4177 | . 2 ⊢ {1, 2} ⊆ ({1, 2} ∪ {3}) | |
| 2 | df-tp 4630 | . 2 ⊢ {1, 2, 3} = ({1, 2} ∪ {3}) | |
| 3 | 1, 2 | sseqtrri 4032 | 1 ⊢ {1, 2} ⊆ {1, 2, 3} | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∪ cun 3948 ⊆ wss 3950 {csn 4625 {cpr 4627 {ctp 4629 1c1 11157 2c2 12322 3c3 12323 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3955 df-ss 3967 df-tp 4630 | 
| This theorem is referenced by: ex-pss 30448 | 
| Copyright terms: Public domain | W3C validator |