| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-ss | Structured version Visualization version GIF version | ||
| Description: Example for df-ss 3915. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-ss | ⊢ {1, 2} ⊆ {1, 2, 3} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4127 | . 2 ⊢ {1, 2} ⊆ ({1, 2} ∪ {3}) | |
| 2 | df-tp 4580 | . 2 ⊢ {1, 2, 3} = ({1, 2} ∪ {3}) | |
| 3 | 1, 2 | sseqtrri 3980 | 1 ⊢ {1, 2} ⊆ {1, 2, 3} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3896 ⊆ wss 3898 {csn 4575 {cpr 4577 {ctp 4579 1c1 11014 2c2 12187 3c3 12188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-tp 4580 |
| This theorem is referenced by: ex-pss 30410 |
| Copyright terms: Public domain | W3C validator |