| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-ss | Structured version Visualization version GIF version | ||
| Description: Example for df-ss 3948. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-ss | ⊢ {1, 2} ⊆ {1, 2, 3} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4158 | . 2 ⊢ {1, 2} ⊆ ({1, 2} ∪ {3}) | |
| 2 | df-tp 4611 | . 2 ⊢ {1, 2, 3} = ({1, 2} ∪ {3}) | |
| 3 | 1, 2 | sseqtrri 4013 | 1 ⊢ {1, 2} ⊆ {1, 2, 3} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3929 ⊆ wss 3931 {csn 4606 {cpr 4608 {ctp 4610 1c1 11135 2c2 12300 3c3 12301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-tp 4611 |
| This theorem is referenced by: ex-pss 30414 |
| Copyright terms: Public domain | W3C validator |