MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ss Structured version   Visualization version   GIF version

Theorem ex-ss 30363
Description: Example for df-ss 3934. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-ss {1, 2} ⊆ {1, 2, 3}

Proof of Theorem ex-ss
StepHypRef Expression
1 ssun1 4144 . 2 {1, 2} ⊆ ({1, 2} ∪ {3})
2 df-tp 4597 . 2 {1, 2, 3} = ({1, 2} ∪ {3})
31, 2sseqtrri 3999 1 {1, 2} ⊆ {1, 2, 3}
Colors of variables: wff setvar class
Syntax hints:  cun 3915  wss 3917  {csn 4592  {cpr 4594  {ctp 4596  1c1 11076  2c2 12248  3c3 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-ss 3934  df-tp 4597
This theorem is referenced by:  ex-pss  30364
  Copyright terms: Public domain W3C validator