MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ss Structured version   Visualization version   GIF version

Theorem ex-ss 30174
Description: Example for df-ss 3958. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-ss {1, 2} ⊆ {1, 2, 3}

Proof of Theorem ex-ss
StepHypRef Expression
1 ssun1 4165 . 2 {1, 2} ⊆ ({1, 2} ∪ {3})
2 df-tp 4626 . 2 {1, 2, 3} = ({1, 2} ∪ {3})
31, 2sseqtrri 4012 1 {1, 2} ⊆ {1, 2, 3}
Colors of variables: wff setvar class
Syntax hints:  cun 3939  wss 3941  {csn 4621  {cpr 4623  {ctp 4625  1c1 11108  2c2 12266  3c3 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-un 3946  df-in 3948  df-ss 3958  df-tp 4626
This theorem is referenced by:  ex-pss  30175
  Copyright terms: Public domain W3C validator