![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-ss | Structured version Visualization version GIF version |
Description: Example for df-ss 3958. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-ss | ⊢ {1, 2} ⊆ {1, 2, 3} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4165 | . 2 ⊢ {1, 2} ⊆ ({1, 2} ∪ {3}) | |
2 | df-tp 4626 | . 2 ⊢ {1, 2, 3} = ({1, 2} ∪ {3}) | |
3 | 1, 2 | sseqtrri 4012 | 1 ⊢ {1, 2} ⊆ {1, 2, 3} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3939 ⊆ wss 3941 {csn 4621 {cpr 4623 {ctp 4625 1c1 11108 2c2 12266 3c3 12267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3946 df-in 3948 df-ss 3958 df-tp 4626 |
This theorem is referenced by: ex-pss 30175 |
Copyright terms: Public domain | W3C validator |