![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-ss | Structured version Visualization version GIF version |
Description: Example for df-ss 3964. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-ss | ⊢ {1, 2} ⊆ {1, 2, 3} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4171 | . 2 ⊢ {1, 2} ⊆ ({1, 2} ∪ {3}) | |
2 | df-tp 4632 | . 2 ⊢ {1, 2, 3} = ({1, 2} ∪ {3}) | |
3 | 1, 2 | sseqtrri 4018 | 1 ⊢ {1, 2} ⊆ {1, 2, 3} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3945 ⊆ wss 3947 {csn 4627 {cpr 4629 {ctp 4631 1c1 11107 2c2 12263 3c3 12264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3952 df-in 3954 df-ss 3964 df-tp 4632 |
This theorem is referenced by: ex-pss 29670 |
Copyright terms: Public domain | W3C validator |