| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-ss | Structured version Visualization version GIF version | ||
| Description: Example for df-ss 3943. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-ss | ⊢ {1, 2} ⊆ {1, 2, 3} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4153 | . 2 ⊢ {1, 2} ⊆ ({1, 2} ∪ {3}) | |
| 2 | df-tp 4606 | . 2 ⊢ {1, 2, 3} = ({1, 2} ∪ {3}) | |
| 3 | 1, 2 | sseqtrri 4008 | 1 ⊢ {1, 2} ⊆ {1, 2, 3} |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3924 ⊆ wss 3926 {csn 4601 {cpr 4603 {ctp 4605 1c1 11128 2c2 12293 3c3 12294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-tp 4606 |
| This theorem is referenced by: ex-pss 30355 |
| Copyright terms: Public domain | W3C validator |