MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-ss Structured version   Visualization version   GIF version

Theorem ex-ss 30447
Description: Example for df-ss 3967. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-ss {1, 2} ⊆ {1, 2, 3}

Proof of Theorem ex-ss
StepHypRef Expression
1 ssun1 4177 . 2 {1, 2} ⊆ ({1, 2} ∪ {3})
2 df-tp 4630 . 2 {1, 2, 3} = ({1, 2} ∪ {3})
31, 2sseqtrri 4032 1 {1, 2} ⊆ {1, 2, 3}
Colors of variables: wff setvar class
Syntax hints:  cun 3948  wss 3950  {csn 4625  {cpr 4627  {ctp 4629  1c1 11157  2c2 12322  3c3 12323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3955  df-ss 3967  df-tp 4630
This theorem is referenced by:  ex-pss  30448
  Copyright terms: Public domain W3C validator