| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-pss | Structured version Visualization version GIF version | ||
| Description: Example for df-pss 3934. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-pss | ⊢ {1, 2} ⊊ {1, 2, 3} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-ss 30356 | . 2 ⊢ {1, 2} ⊆ {1, 2, 3} | |
| 2 | 3ex 12268 | . . . . 5 ⊢ 3 ∈ V | |
| 3 | 2 | tpid3 4737 | . . . 4 ⊢ 3 ∈ {1, 2, 3} |
| 4 | 1re 11174 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 5 | 1lt3 12354 | . . . . . 6 ⊢ 1 < 3 | |
| 6 | 4, 5 | gtneii 11286 | . . . . 5 ⊢ 3 ≠ 1 |
| 7 | 2re 12260 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 8 | 2lt3 12353 | . . . . . 6 ⊢ 2 < 3 | |
| 9 | 7, 8 | gtneii 11286 | . . . . 5 ⊢ 3 ≠ 2 |
| 10 | 6, 9 | nelpri 4619 | . . . 4 ⊢ ¬ 3 ∈ {1, 2} |
| 11 | nelne1 3022 | . . . 4 ⊢ ((3 ∈ {1, 2, 3} ∧ ¬ 3 ∈ {1, 2}) → {1, 2, 3} ≠ {1, 2}) | |
| 12 | 3, 10, 11 | mp2an 692 | . . 3 ⊢ {1, 2, 3} ≠ {1, 2} |
| 13 | 12 | necomi 2979 | . 2 ⊢ {1, 2} ≠ {1, 2, 3} |
| 14 | df-pss 3934 | . 2 ⊢ ({1, 2} ⊊ {1, 2, 3} ↔ ({1, 2} ⊆ {1, 2, 3} ∧ {1, 2} ≠ {1, 2, 3})) | |
| 15 | 1, 13, 14 | mpbir2an 711 | 1 ⊢ {1, 2} ⊊ {1, 2, 3} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ⊊ wpss 3915 {cpr 4591 {ctp 4593 1c1 11069 2c2 12241 3c3 12242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-2 12249 df-3 12250 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |