![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-pss | Structured version Visualization version GIF version |
Description: Example for df-pss 3996. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-pss | ⊢ {1, 2} ⊊ {1, 2, 3} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ex-ss 30459 | . 2 ⊢ {1, 2} ⊆ {1, 2, 3} | |
2 | 3ex 12375 | . . . . 5 ⊢ 3 ∈ V | |
3 | 2 | tpid3 4798 | . . . 4 ⊢ 3 ∈ {1, 2, 3} |
4 | 1re 11290 | . . . . . 6 ⊢ 1 ∈ ℝ | |
5 | 1lt3 12466 | . . . . . 6 ⊢ 1 < 3 | |
6 | 4, 5 | gtneii 11402 | . . . . 5 ⊢ 3 ≠ 1 |
7 | 2re 12367 | . . . . . 6 ⊢ 2 ∈ ℝ | |
8 | 2lt3 12465 | . . . . . 6 ⊢ 2 < 3 | |
9 | 7, 8 | gtneii 11402 | . . . . 5 ⊢ 3 ≠ 2 |
10 | 6, 9 | nelpri 4677 | . . . 4 ⊢ ¬ 3 ∈ {1, 2} |
11 | nelne1 3045 | . . . 4 ⊢ ((3 ∈ {1, 2, 3} ∧ ¬ 3 ∈ {1, 2}) → {1, 2, 3} ≠ {1, 2}) | |
12 | 3, 10, 11 | mp2an 691 | . . 3 ⊢ {1, 2, 3} ≠ {1, 2} |
13 | 12 | necomi 3001 | . 2 ⊢ {1, 2} ≠ {1, 2, 3} |
14 | df-pss 3996 | . 2 ⊢ ({1, 2} ⊊ {1, 2, 3} ↔ ({1, 2} ⊆ {1, 2, 3} ∧ {1, 2} ≠ {1, 2, 3})) | |
15 | 1, 13, 14 | mpbir2an 710 | 1 ⊢ {1, 2} ⊊ {1, 2, 3} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 ⊊ wpss 3977 {cpr 4650 {ctp 4652 1c1 11185 2c2 12348 3c3 12349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-2 12356 df-3 12357 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |