MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-pss Structured version   Visualization version   GIF version

Theorem ex-pss 30357
Description: Example for df-pss 3934. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-pss {1, 2} ⊊ {1, 2, 3}

Proof of Theorem ex-pss
StepHypRef Expression
1 ex-ss 30356 . 2 {1, 2} ⊆ {1, 2, 3}
2 3ex 12268 . . . . 5 3 ∈ V
32tpid3 4737 . . . 4 3 ∈ {1, 2, 3}
4 1re 11174 . . . . . 6 1 ∈ ℝ
5 1lt3 12354 . . . . . 6 1 < 3
64, 5gtneii 11286 . . . . 5 3 ≠ 1
7 2re 12260 . . . . . 6 2 ∈ ℝ
8 2lt3 12353 . . . . . 6 2 < 3
97, 8gtneii 11286 . . . . 5 3 ≠ 2
106, 9nelpri 4619 . . . 4 ¬ 3 ∈ {1, 2}
11 nelne1 3022 . . . 4 ((3 ∈ {1, 2, 3} ∧ ¬ 3 ∈ {1, 2}) → {1, 2, 3} ≠ {1, 2})
123, 10, 11mp2an 692 . . 3 {1, 2, 3} ≠ {1, 2}
1312necomi 2979 . 2 {1, 2} ≠ {1, 2, 3}
14 df-pss 3934 . 2 ({1, 2} ⊊ {1, 2, 3} ↔ ({1, 2} ⊆ {1, 2, 3} ∧ {1, 2} ≠ {1, 2, 3}))
151, 13, 14mpbir2an 711 1 {1, 2} ⊊ {1, 2, 3}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  wne 2925  wss 3914  wpss 3915  {cpr 4591  {ctp 4593  1c1 11069  2c2 12241  3c3 12242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-2 12249  df-3 12250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator