![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-pss | Structured version Visualization version GIF version |
Description: Example for df-pss 3959. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-pss | ⊢ {1, 2} ⊊ {1, 2, 3} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ex-ss 30149 | . 2 ⊢ {1, 2} ⊆ {1, 2, 3} | |
2 | 3ex 12291 | . . . . 5 ⊢ 3 ∈ V | |
3 | 2 | tpid3 4769 | . . . 4 ⊢ 3 ∈ {1, 2, 3} |
4 | 1re 11211 | . . . . . 6 ⊢ 1 ∈ ℝ | |
5 | 1lt3 12382 | . . . . . 6 ⊢ 1 < 3 | |
6 | 4, 5 | gtneii 11323 | . . . . 5 ⊢ 3 ≠ 1 |
7 | 2re 12283 | . . . . . 6 ⊢ 2 ∈ ℝ | |
8 | 2lt3 12381 | . . . . . 6 ⊢ 2 < 3 | |
9 | 7, 8 | gtneii 11323 | . . . . 5 ⊢ 3 ≠ 2 |
10 | 6, 9 | nelpri 4649 | . . . 4 ⊢ ¬ 3 ∈ {1, 2} |
11 | nelne1 3031 | . . . 4 ⊢ ((3 ∈ {1, 2, 3} ∧ ¬ 3 ∈ {1, 2}) → {1, 2, 3} ≠ {1, 2}) | |
12 | 3, 10, 11 | mp2an 689 | . . 3 ⊢ {1, 2, 3} ≠ {1, 2} |
13 | 12 | necomi 2987 | . 2 ⊢ {1, 2} ≠ {1, 2, 3} |
14 | df-pss 3959 | . 2 ⊢ ({1, 2} ⊊ {1, 2, 3} ↔ ({1, 2} ⊆ {1, 2, 3} ∧ {1, 2} ≠ {1, 2, 3})) | |
15 | 1, 13, 14 | mpbir2an 708 | 1 ⊢ {1, 2} ⊊ {1, 2, 3} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2098 ≠ wne 2932 ⊆ wss 3940 ⊊ wpss 3941 {cpr 4622 {ctp 4624 1c1 11107 2c2 12264 3c3 12265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-2 12272 df-3 12273 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |