Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatlem Structured version   Visualization version   GIF version

Theorem tfsconcatlem 42541
Description: Lemma for tfsconcatun 42542. (Contributed by RP, 23-Feb-2025.)
Assertion
Ref Expression
tfsconcatlem ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem tfsconcatlem
StepHypRef Expression
1 onss 7765 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
213ad2ant2 1131 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐵 ⊆ On)
3 oacl 8530 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
4 eloni 6364 . . . . . . . . . . . . . . . 16 ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵))
53, 4syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵))
6 eloni 6364 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → Ord 𝐴)
76adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
8 ordeldif 42463 . . . . . . . . . . . . . . 15 ((Ord (𝐴 +o 𝐵) ∧ Ord 𝐴) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶)))
95, 7, 8syl2anc 583 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶)))
109biimpa 476 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶))
1110ancomd 461 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵)))
1211ex 412 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) → (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
1312imdistani 568 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
14133impa 1107 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
15 oawordex2 42531 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
1614, 15syl 17 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
17 simp1 1133 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐴 ∈ On)
18 onss 7765 . . . . . . . . . . . . . . 15 ((𝐴 +o 𝐵) ∈ On → (𝐴 +o 𝐵) ⊆ On)
193, 18syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ On)
2019ssdifd 4132 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ⊆ (On ∖ 𝐴))
2120sselda 3974 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴))
22213impa 1107 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴))
23 ordon 7757 . . . . . . . . . . . 12 Ord On
2417, 6syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → Ord 𝐴)
25 ordeldif 42463 . . . . . . . . . . . 12 ((Ord On ∧ Ord 𝐴) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴𝐶)))
2623, 24, 25sylancr 586 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴𝐶)))
2722, 26mpbid 231 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ On ∧ 𝐴𝐶))
28 anass 468 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶) ↔ (𝐴 ∈ On ∧ (𝐶 ∈ On ∧ 𝐴𝐶)))
2917, 27, 28sylanbrc 582 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶))
30 oawordeu 8550 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶)
3129, 30syl 17 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶)
32 reuss 4308 . . . . . . . 8 ((𝐵 ⊆ On ∧ ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 ∧ ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶) → ∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
332, 16, 31, 32syl3anc 1368 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
34 reurmo 3371 . . . . . . 7 (∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
3533, 34syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
36 df-rmo 3368 . . . . . 6 (∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 ↔ ∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶))
3735, 36sylib 217 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶))
38 moeq 3695 . . . . . 6 ∃*𝑥 𝑥 = (𝐹𝑦)
3938ax-gen 1789 . . . . 5 𝑦∃*𝑥 𝑥 = (𝐹𝑦)
40 moexexvw 2616 . . . . 5 ((∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ ∀𝑦∃*𝑥 𝑥 = (𝐹𝑦)) → ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4137, 39, 40sylancl 585 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
42 df-rex 3063 . . . . . 6 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦(𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
43 anass 468 . . . . . . 7 (((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)) ↔ (𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
4443exbii 1842 . . . . . 6 (∃𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)) ↔ ∃𝑦(𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
4542, 44bitr4i 278 . . . . 5 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4645mobii 2534 . . . 4 (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4741, 46sylibr 233 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)))
48 fvex 6894 . . . . . . . . 9 (𝐹𝑦) ∈ V
4948isseti 3482 . . . . . . . 8 𝑥 𝑥 = (𝐹𝑦)
5049jctr 524 . . . . . . 7 ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
5150a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) ∧ 𝑦𝐵) → ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦))))
5251reximdva 3160 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦))))
5316, 52mpd 15 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
54 rexcom4a 3281 . . . . 5 (∃𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
55 exmoeu 2567 . . . . 5 (∃𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5654, 55bitr3i 277 . . . 4 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)) ↔ (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5753, 56sylib 217 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5847, 57mpd 15 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)))
59 eqcom 2731 . . . . 5 ((𝐴 +o 𝑦) = 𝐶𝐶 = (𝐴 +o 𝑦))
6059anbi1i 623 . . . 4 (((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6160rexbii 3086 . . 3 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6261eubii 2571 . 2 (∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6358, 62sylib 217 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084  wal 1531   = wceq 1533  wex 1773  wcel 2098  ∃*wmo 2524  ∃!weu 2554  wrex 3062  ∃!wreu 3366  ∃*wrmo 3367  cdif 3937  wss 3940  Ord word 6353  Oncon0 6354  cfv 6533  (class class class)co 7401   +o coa 8458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-oadd 8465
This theorem is referenced by:  tfsconcatun  42542  tfsconcatfn  42543  tfsconcatfv1  42544  tfsconcatfv2  42545
  Copyright terms: Public domain W3C validator