Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatlem Structured version   Visualization version   GIF version

Theorem tfsconcatlem 43434
Description: Lemma for tfsconcatun 43435. (Contributed by RP, 23-Feb-2025.)
Assertion
Ref Expression
tfsconcatlem ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem tfsconcatlem
StepHypRef Expression
1 onss 7724 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
213ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐵 ⊆ On)
3 oacl 8456 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
4 eloni 6322 . . . . . . . . . . . . . . . 16 ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵))
53, 4syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵))
6 eloni 6322 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → Ord 𝐴)
76adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
8 ordeldif 43356 . . . . . . . . . . . . . . 15 ((Ord (𝐴 +o 𝐵) ∧ Ord 𝐴) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶)))
95, 7, 8syl2anc 584 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶)))
109biimpa 476 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶))
1110ancomd 461 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵)))
1211ex 412 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) → (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
1312imdistani 568 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
14133impa 1109 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
15 oawordex2 43424 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
1614, 15syl 17 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
17 simp1 1136 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐴 ∈ On)
18 onss 7724 . . . . . . . . . . . . . . 15 ((𝐴 +o 𝐵) ∈ On → (𝐴 +o 𝐵) ⊆ On)
193, 18syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ On)
2019ssdifd 4094 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ⊆ (On ∖ 𝐴))
2120sselda 3929 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴))
22213impa 1109 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴))
23 ordon 7716 . . . . . . . . . . . 12 Ord On
2417, 6syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → Ord 𝐴)
25 ordeldif 43356 . . . . . . . . . . . 12 ((Ord On ∧ Ord 𝐴) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴𝐶)))
2623, 24, 25sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴𝐶)))
2722, 26mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ On ∧ 𝐴𝐶))
28 anass 468 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶) ↔ (𝐴 ∈ On ∧ (𝐶 ∈ On ∧ 𝐴𝐶)))
2917, 27, 28sylanbrc 583 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶))
30 oawordeu 8476 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶)
3129, 30syl 17 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶)
32 reuss 4276 . . . . . . . 8 ((𝐵 ⊆ On ∧ ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 ∧ ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶) → ∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
332, 16, 31, 32syl3anc 1373 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
34 reurmo 3349 . . . . . . 7 (∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
3533, 34syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
36 df-rmo 3346 . . . . . 6 (∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 ↔ ∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶))
3735, 36sylib 218 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶))
38 moeq 3661 . . . . . 6 ∃*𝑥 𝑥 = (𝐹𝑦)
3938ax-gen 1796 . . . . 5 𝑦∃*𝑥 𝑥 = (𝐹𝑦)
40 moexexvw 2623 . . . . 5 ((∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ ∀𝑦∃*𝑥 𝑥 = (𝐹𝑦)) → ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4137, 39, 40sylancl 586 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
42 df-rex 3057 . . . . . 6 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦(𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
43 anass 468 . . . . . . 7 (((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)) ↔ (𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
4443exbii 1849 . . . . . 6 (∃𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)) ↔ ∃𝑦(𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
4542, 44bitr4i 278 . . . . 5 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4645mobii 2543 . . . 4 (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4741, 46sylibr 234 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)))
48 fvex 6841 . . . . . . . . 9 (𝐹𝑦) ∈ V
4948isseti 3454 . . . . . . . 8 𝑥 𝑥 = (𝐹𝑦)
5049jctr 524 . . . . . . 7 ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
5150a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) ∧ 𝑦𝐵) → ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦))))
5251reximdva 3145 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦))))
5316, 52mpd 15 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
54 rexcom4a 3262 . . . . 5 (∃𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
55 exmoeu 2576 . . . . 5 (∃𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5654, 55bitr3i 277 . . . 4 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)) ↔ (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5753, 56sylib 218 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5847, 57mpd 15 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)))
59 eqcom 2738 . . . . 5 ((𝐴 +o 𝑦) = 𝐶𝐶 = (𝐴 +o 𝑦))
6059anbi1i 624 . . . 4 (((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6160rexbii 3079 . . 3 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6261eubii 2580 . 2 (∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6358, 62sylib 218 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  ∃*wmo 2533  ∃!weu 2563  wrex 3056  ∃!wreu 3344  ∃*wrmo 3345  cdif 3894  wss 3897  Ord word 6311  Oncon0 6312  cfv 6487  (class class class)co 7352   +o coa 8388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-oadd 8395
This theorem is referenced by:  tfsconcatun  43435  tfsconcatfn  43436  tfsconcatfv1  43437  tfsconcatfv2  43438
  Copyright terms: Public domain W3C validator