Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatlem Structured version   Visualization version   GIF version

Theorem tfsconcatlem 43309
Description: Lemma for tfsconcatun 43310. (Contributed by RP, 23-Feb-2025.)
Assertion
Ref Expression
tfsconcatlem ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem tfsconcatlem
StepHypRef Expression
1 onss 7725 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
213ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐵 ⊆ On)
3 oacl 8460 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
4 eloni 6321 . . . . . . . . . . . . . . . 16 ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵))
53, 4syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵))
6 eloni 6321 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → Ord 𝐴)
76adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
8 ordeldif 43231 . . . . . . . . . . . . . . 15 ((Ord (𝐴 +o 𝐵) ∧ Ord 𝐴) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶)))
95, 7, 8syl2anc 584 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶)))
109biimpa 476 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶))
1110ancomd 461 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵)))
1211ex 412 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) → (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
1312imdistani 568 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
14133impa 1109 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
15 oawordex2 43299 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
1614, 15syl 17 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
17 simp1 1136 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐴 ∈ On)
18 onss 7725 . . . . . . . . . . . . . . 15 ((𝐴 +o 𝐵) ∈ On → (𝐴 +o 𝐵) ⊆ On)
193, 18syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ On)
2019ssdifd 4098 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ⊆ (On ∖ 𝐴))
2120sselda 3937 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴))
22213impa 1109 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴))
23 ordon 7717 . . . . . . . . . . . 12 Ord On
2417, 6syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → Ord 𝐴)
25 ordeldif 43231 . . . . . . . . . . . 12 ((Ord On ∧ Ord 𝐴) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴𝐶)))
2623, 24, 25sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴𝐶)))
2722, 26mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ On ∧ 𝐴𝐶))
28 anass 468 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶) ↔ (𝐴 ∈ On ∧ (𝐶 ∈ On ∧ 𝐴𝐶)))
2917, 27, 28sylanbrc 583 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶))
30 oawordeu 8480 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶)
3129, 30syl 17 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶)
32 reuss 4280 . . . . . . . 8 ((𝐵 ⊆ On ∧ ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 ∧ ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶) → ∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
332, 16, 31, 32syl3anc 1373 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
34 reurmo 3348 . . . . . . 7 (∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
3533, 34syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
36 df-rmo 3345 . . . . . 6 (∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 ↔ ∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶))
3735, 36sylib 218 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶))
38 moeq 3669 . . . . . 6 ∃*𝑥 𝑥 = (𝐹𝑦)
3938ax-gen 1795 . . . . 5 𝑦∃*𝑥 𝑥 = (𝐹𝑦)
40 moexexvw 2621 . . . . 5 ((∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ ∀𝑦∃*𝑥 𝑥 = (𝐹𝑦)) → ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4137, 39, 40sylancl 586 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
42 df-rex 3054 . . . . . 6 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦(𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
43 anass 468 . . . . . . 7 (((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)) ↔ (𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
4443exbii 1848 . . . . . 6 (∃𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)) ↔ ∃𝑦(𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
4542, 44bitr4i 278 . . . . 5 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4645mobii 2541 . . . 4 (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4741, 46sylibr 234 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)))
48 fvex 6839 . . . . . . . . 9 (𝐹𝑦) ∈ V
4948isseti 3456 . . . . . . . 8 𝑥 𝑥 = (𝐹𝑦)
5049jctr 524 . . . . . . 7 ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
5150a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) ∧ 𝑦𝐵) → ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦))))
5251reximdva 3142 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦))))
5316, 52mpd 15 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
54 rexcom4a 3259 . . . . 5 (∃𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
55 exmoeu 2574 . . . . 5 (∃𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5654, 55bitr3i 277 . . . 4 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)) ↔ (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5753, 56sylib 218 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5847, 57mpd 15 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)))
59 eqcom 2736 . . . . 5 ((𝐴 +o 𝑦) = 𝐶𝐶 = (𝐴 +o 𝑦))
6059anbi1i 624 . . . 4 (((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6160rexbii 3076 . . 3 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6261eubii 2578 . 2 (∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6358, 62sylib 218 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2531  ∃!weu 2561  wrex 3053  ∃!wreu 3343  ∃*wrmo 3344  cdif 3902  wss 3905  Ord word 6310  Oncon0 6311  cfv 6486  (class class class)co 7353   +o coa 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-oadd 8399
This theorem is referenced by:  tfsconcatun  43310  tfsconcatfn  43311  tfsconcatfv1  43312  tfsconcatfv2  43313
  Copyright terms: Public domain W3C validator