Proof of Theorem tfsconcatlem
| Step | Hyp | Ref
| Expression |
| 1 | | onss 7805 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
| 2 | 1 | 3ad2ant2 1135 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐵 ⊆ On) |
| 3 | | oacl 8573 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
| 4 | | eloni 6394 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵)) |
| 5 | 3, 4 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵)) |
| 6 | | eloni 6394 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 7 | 6 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴) |
| 8 | | ordeldif 43271 |
. . . . . . . . . . . . . . 15
⊢ ((Ord
(𝐴 +o 𝐵) ∧ Ord 𝐴) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴 ⊆ 𝐶))) |
| 9 | 5, 7, 8 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴 ⊆ 𝐶))) |
| 10 | 9 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴 ⊆ 𝐶)) |
| 11 | 10 | ancomd 461 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) |
| 12 | 11 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) → (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵)))) |
| 13 | 12 | imdistani 568 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵)))) |
| 14 | 13 | 3impa 1110 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵)))) |
| 15 | | oawordex2 43339 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑦 ∈ 𝐵 (𝐴 +o 𝑦) = 𝐶) |
| 16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦 ∈ 𝐵 (𝐴 +o 𝑦) = 𝐶) |
| 17 | | simp1 1137 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐴 ∈ On) |
| 18 | | onss 7805 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 +o 𝐵) ∈ On → (𝐴 +o 𝐵) ⊆ On) |
| 19 | 3, 18 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ On) |
| 20 | 19 | ssdifd 4145 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ⊆ (On ∖ 𝐴)) |
| 21 | 20 | sselda 3983 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴)) |
| 22 | 21 | 3impa 1110 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴)) |
| 23 | | ordon 7797 |
. . . . . . . . . . . 12
⊢ Ord
On |
| 24 | 17, 6 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → Ord 𝐴) |
| 25 | | ordeldif 43271 |
. . . . . . . . . . . 12
⊢ ((Ord On
∧ Ord 𝐴) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴 ⊆ 𝐶))) |
| 26 | 23, 24, 25 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴 ⊆ 𝐶))) |
| 27 | 22, 26 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ On ∧ 𝐴 ⊆ 𝐶)) |
| 28 | | anass 468 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐶) ↔ (𝐴 ∈ On ∧ (𝐶 ∈ On ∧ 𝐴 ⊆ 𝐶))) |
| 29 | 17, 27, 28 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐶)) |
| 30 | | oawordeu 8593 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ⊆ 𝐶) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶) |
| 31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶) |
| 32 | | reuss 4327 |
. . . . . . . 8
⊢ ((𝐵 ⊆ On ∧ ∃𝑦 ∈ 𝐵 (𝐴 +o 𝑦) = 𝐶 ∧ ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶) → ∃!𝑦 ∈ 𝐵 (𝐴 +o 𝑦) = 𝐶) |
| 33 | 2, 16, 31, 32 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦 ∈ 𝐵 (𝐴 +o 𝑦) = 𝐶) |
| 34 | | reurmo 3383 |
. . . . . . 7
⊢
(∃!𝑦 ∈
𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃*𝑦 ∈ 𝐵 (𝐴 +o 𝑦) = 𝐶) |
| 35 | 33, 34 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦 ∈ 𝐵 (𝐴 +o 𝑦) = 𝐶) |
| 36 | | df-rmo 3380 |
. . . . . 6
⊢
(∃*𝑦 ∈
𝐵 (𝐴 +o 𝑦) = 𝐶 ↔ ∃*𝑦(𝑦 ∈ 𝐵 ∧ (𝐴 +o 𝑦) = 𝐶)) |
| 37 | 35, 36 | sylib 218 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦(𝑦 ∈ 𝐵 ∧ (𝐴 +o 𝑦) = 𝐶)) |
| 38 | | moeq 3713 |
. . . . . 6
⊢
∃*𝑥 𝑥 = (𝐹‘𝑦) |
| 39 | 38 | ax-gen 1795 |
. . . . 5
⊢
∀𝑦∃*𝑥 𝑥 = (𝐹‘𝑦) |
| 40 | | moexexvw 2628 |
. . . . 5
⊢
((∃*𝑦(𝑦 ∈ 𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ ∀𝑦∃*𝑥 𝑥 = (𝐹‘𝑦)) → ∃*𝑥∃𝑦((𝑦 ∈ 𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹‘𝑦))) |
| 41 | 37, 39, 40 | sylancl 586 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥∃𝑦((𝑦 ∈ 𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹‘𝑦))) |
| 42 | | df-rex 3071 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)))) |
| 43 | | anass 468 |
. . . . . . 7
⊢ (((𝑦 ∈ 𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹‘𝑦)) ↔ (𝑦 ∈ 𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)))) |
| 44 | 43 | exbii 1848 |
. . . . . 6
⊢
(∃𝑦((𝑦 ∈ 𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹‘𝑦)) ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)))) |
| 45 | 42, 44 | bitr4i 278 |
. . . . 5
⊢
(∃𝑦 ∈
𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) ↔ ∃𝑦((𝑦 ∈ 𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹‘𝑦))) |
| 46 | 45 | mobii 2548 |
. . . 4
⊢
(∃*𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) ↔ ∃*𝑥∃𝑦((𝑦 ∈ 𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹‘𝑦))) |
| 47 | 41, 46 | sylibr 234 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦))) |
| 48 | | fvex 6919 |
. . . . . . . . 9
⊢ (𝐹‘𝑦) ∈ V |
| 49 | 48 | isseti 3498 |
. . . . . . . 8
⊢
∃𝑥 𝑥 = (𝐹‘𝑦) |
| 50 | 49 | jctr 524 |
. . . . . . 7
⊢ ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹‘𝑦))) |
| 51 | 50 | a1i 11 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) ∧ 𝑦 ∈ 𝐵) → ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹‘𝑦)))) |
| 52 | 51 | reximdva 3168 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃𝑦 ∈ 𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹‘𝑦)))) |
| 53 | 16, 52 | mpd 15 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹‘𝑦))) |
| 54 | | rexcom4a 3292 |
. . . . 5
⊢
(∃𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) ↔ ∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹‘𝑦))) |
| 55 | | exmoeu 2581 |
. . . . 5
⊢
(∃𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) ↔ (∃*𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) → ∃!𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)))) |
| 56 | 54, 55 | bitr3i 277 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹‘𝑦)) ↔ (∃*𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) → ∃!𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)))) |
| 57 | 53, 56 | sylib 218 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃*𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) → ∃!𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)))) |
| 58 | 47, 57 | mpd 15 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦))) |
| 59 | | eqcom 2744 |
. . . . 5
⊢ ((𝐴 +o 𝑦) = 𝐶 ↔ 𝐶 = (𝐴 +o 𝑦)) |
| 60 | 59 | anbi1i 624 |
. . . 4
⊢ (((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) ↔ (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹‘𝑦))) |
| 61 | 60 | rexbii 3094 |
. . 3
⊢
(∃𝑦 ∈
𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) ↔ ∃𝑦 ∈ 𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹‘𝑦))) |
| 62 | 61 | eubii 2585 |
. 2
⊢
(∃!𝑥∃𝑦 ∈ 𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ 𝑥 = (𝐹‘𝑦)) ↔ ∃!𝑥∃𝑦 ∈ 𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹‘𝑦))) |
| 63 | 58, 62 | sylib 218 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥∃𝑦 ∈ 𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹‘𝑦))) |