Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatlem Structured version   Visualization version   GIF version

Theorem tfsconcatlem 43298
Description: Lemma for tfsconcatun 43299. (Contributed by RP, 23-Feb-2025.)
Assertion
Ref Expression
tfsconcatlem ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem tfsconcatlem
StepHypRef Expression
1 onss 7820 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
213ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐵 ⊆ On)
3 oacl 8591 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
4 eloni 6405 . . . . . . . . . . . . . . . 16 ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵))
53, 4syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵))
6 eloni 6405 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → Ord 𝐴)
76adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
8 ordeldif 43220 . . . . . . . . . . . . . . 15 ((Ord (𝐴 +o 𝐵) ∧ Ord 𝐴) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶)))
95, 7, 8syl2anc 583 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶)))
109biimpa 476 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶))
1110ancomd 461 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵)))
1211ex 412 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) → (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
1312imdistani 568 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
14133impa 1110 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
15 oawordex2 43288 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
1614, 15syl 17 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
17 simp1 1136 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐴 ∈ On)
18 onss 7820 . . . . . . . . . . . . . . 15 ((𝐴 +o 𝐵) ∈ On → (𝐴 +o 𝐵) ⊆ On)
193, 18syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ On)
2019ssdifd 4168 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ⊆ (On ∖ 𝐴))
2120sselda 4008 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴))
22213impa 1110 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴))
23 ordon 7812 . . . . . . . . . . . 12 Ord On
2417, 6syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → Ord 𝐴)
25 ordeldif 43220 . . . . . . . . . . . 12 ((Ord On ∧ Ord 𝐴) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴𝐶)))
2623, 24, 25sylancr 586 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴𝐶)))
2722, 26mpbid 232 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ On ∧ 𝐴𝐶))
28 anass 468 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶) ↔ (𝐴 ∈ On ∧ (𝐶 ∈ On ∧ 𝐴𝐶)))
2917, 27, 28sylanbrc 582 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶))
30 oawordeu 8611 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶)
3129, 30syl 17 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶)
32 reuss 4346 . . . . . . . 8 ((𝐵 ⊆ On ∧ ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 ∧ ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶) → ∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
332, 16, 31, 32syl3anc 1371 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
34 reurmo 3391 . . . . . . 7 (∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
3533, 34syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
36 df-rmo 3388 . . . . . 6 (∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 ↔ ∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶))
3735, 36sylib 218 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶))
38 moeq 3729 . . . . . 6 ∃*𝑥 𝑥 = (𝐹𝑦)
3938ax-gen 1793 . . . . 5 𝑦∃*𝑥 𝑥 = (𝐹𝑦)
40 moexexvw 2631 . . . . 5 ((∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ ∀𝑦∃*𝑥 𝑥 = (𝐹𝑦)) → ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4137, 39, 40sylancl 585 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
42 df-rex 3077 . . . . . 6 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦(𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
43 anass 468 . . . . . . 7 (((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)) ↔ (𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
4443exbii 1846 . . . . . 6 (∃𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)) ↔ ∃𝑦(𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
4542, 44bitr4i 278 . . . . 5 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4645mobii 2551 . . . 4 (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4741, 46sylibr 234 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)))
48 fvex 6933 . . . . . . . . 9 (𝐹𝑦) ∈ V
4948isseti 3506 . . . . . . . 8 𝑥 𝑥 = (𝐹𝑦)
5049jctr 524 . . . . . . 7 ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
5150a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) ∧ 𝑦𝐵) → ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦))))
5251reximdva 3174 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦))))
5316, 52mpd 15 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
54 rexcom4a 3298 . . . . 5 (∃𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
55 exmoeu 2584 . . . . 5 (∃𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5654, 55bitr3i 277 . . . 4 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)) ↔ (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5753, 56sylib 218 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5847, 57mpd 15 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)))
59 eqcom 2747 . . . . 5 ((𝐴 +o 𝑦) = 𝐶𝐶 = (𝐴 +o 𝑦))
6059anbi1i 623 . . . 4 (((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6160rexbii 3100 . . 3 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6261eubii 2588 . 2 (∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6358, 62sylib 218 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃*wmo 2541  ∃!weu 2571  wrex 3076  ∃!wreu 3386  ∃*wrmo 3387  cdif 3973  wss 3976  Ord word 6394  Oncon0 6395  cfv 6573  (class class class)co 7448   +o coa 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526
This theorem is referenced by:  tfsconcatun  43299  tfsconcatfn  43300  tfsconcatfv1  43301  tfsconcatfv2  43302
  Copyright terms: Public domain W3C validator