Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatlem Structured version   Visualization version   GIF version

Theorem tfsconcatlem 42389
Description: Lemma for tfsconcatun 42390. (Contributed by RP, 23-Feb-2025.)
Assertion
Ref Expression
tfsconcatlem ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem tfsconcatlem
StepHypRef Expression
1 onss 7775 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
213ad2ant2 1133 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐵 ⊆ On)
3 oacl 8538 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
4 eloni 6375 . . . . . . . . . . . . . . . 16 ((𝐴 +o 𝐵) ∈ On → Ord (𝐴 +o 𝐵))
53, 4syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 +o 𝐵))
6 eloni 6375 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → Ord 𝐴)
76adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
8 ordeldif 42311 . . . . . . . . . . . . . . 15 ((Ord (𝐴 +o 𝐵) ∧ Ord 𝐴) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶)))
95, 7, 8syl2anc 583 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶)))
109biimpa 476 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (𝐴 +o 𝐵) ∧ 𝐴𝐶))
1110ancomd 461 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵)))
1211ex 412 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴) → (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
1312imdistani 568 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
14133impa 1109 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))))
15 oawordex2 42379 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴𝐶𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
1614, 15syl 17 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
17 simp1 1135 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐴 ∈ On)
18 onss 7775 . . . . . . . . . . . . . . 15 ((𝐴 +o 𝐵) ∈ On → (𝐴 +o 𝐵) ⊆ On)
193, 18syl 17 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ On)
2019ssdifd 4141 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ⊆ (On ∖ 𝐴))
2120sselda 3983 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴))
22213impa 1109 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → 𝐶 ∈ (On ∖ 𝐴))
23 ordon 7767 . . . . . . . . . . . 12 Ord On
2417, 6syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → Ord 𝐴)
25 ordeldif 42311 . . . . . . . . . . . 12 ((Ord On ∧ Ord 𝐴) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴𝐶)))
2623, 24, 25sylancr 586 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ (On ∖ 𝐴) ↔ (𝐶 ∈ On ∧ 𝐴𝐶)))
2722, 26mpbid 231 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (𝐶 ∈ On ∧ 𝐴𝐶))
28 anass 468 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶) ↔ (𝐴 ∈ On ∧ (𝐶 ∈ On ∧ 𝐴𝐶)))
2917, 27, 28sylanbrc 582 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶))
30 oawordeu 8558 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐶) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶)
3129, 30syl 17 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶)
32 reuss 4317 . . . . . . . 8 ((𝐵 ⊆ On ∧ ∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 ∧ ∃!𝑦 ∈ On (𝐴 +o 𝑦) = 𝐶) → ∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
332, 16, 31, 32syl3anc 1370 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
34 reurmo 3378 . . . . . . 7 (∃!𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
3533, 34syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶)
36 df-rmo 3375 . . . . . 6 (∃*𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 ↔ ∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶))
3735, 36sylib 217 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶))
38 moeq 3704 . . . . . 6 ∃*𝑥 𝑥 = (𝐹𝑦)
3938ax-gen 1796 . . . . 5 𝑦∃*𝑥 𝑥 = (𝐹𝑦)
40 moexexvw 2623 . . . . 5 ((∃*𝑦(𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ ∀𝑦∃*𝑥 𝑥 = (𝐹𝑦)) → ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4137, 39, 40sylancl 585 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
42 df-rex 3070 . . . . . 6 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦(𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
43 anass 468 . . . . . . 7 (((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)) ↔ (𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
4443exbii 1849 . . . . . 6 (∃𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)) ↔ ∃𝑦(𝑦𝐵 ∧ ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
4542, 44bitr4i 277 . . . . 5 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4645mobii 2541 . . . 4 (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃*𝑥𝑦((𝑦𝐵 ∧ (𝐴 +o 𝑦) = 𝐶) ∧ 𝑥 = (𝐹𝑦)))
4741, 46sylibr 233 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)))
48 fvex 6905 . . . . . . . . 9 (𝐹𝑦) ∈ V
4948isseti 3489 . . . . . . . 8 𝑥 𝑥 = (𝐹𝑦)
5049jctr 524 . . . . . . 7 ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
5150a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) ∧ 𝑦𝐵) → ((𝐴 +o 𝑦) = 𝐶 → ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦))))
5251reximdva 3167 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃𝑦𝐵 (𝐴 +o 𝑦) = 𝐶 → ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦))))
5316, 52mpd 15 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
54 rexcom4a 3288 . . . . 5 (∃𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)))
55 exmoeu 2574 . . . . 5 (∃𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5654, 55bitr3i 276 . . . 4 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶 ∧ ∃𝑥 𝑥 = (𝐹𝑦)) ↔ (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5753, 56sylib 217 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → (∃*𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦))))
5847, 57mpd 15 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)))
59 eqcom 2738 . . . . 5 ((𝐴 +o 𝑦) = 𝐶𝐶 = (𝐴 +o 𝑦))
6059anbi1i 623 . . . 4 (((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6160rexbii 3093 . . 3 (∃𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6261eubii 2578 . 2 (∃!𝑥𝑦𝐵 ((𝐴 +o 𝑦) = 𝐶𝑥 = (𝐹𝑦)) ↔ ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
6358, 62sylib 217 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥𝑦𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1780  wcel 2105  ∃*wmo 2531  ∃!weu 2561  wrex 3069  ∃!wreu 3373  ∃*wrmo 3374  cdif 3946  wss 3949  Ord word 6364  Oncon0 6365  cfv 6544  (class class class)co 7412   +o coa 8466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-oadd 8473
This theorem is referenced by:  tfsconcatun  42390  tfsconcatfn  42391  tfsconcatfv1  42392  tfsconcatfv2  42393
  Copyright terms: Public domain W3C validator