MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexv1 Structured version   Visualization version   GIF version

Theorem cbvexv1 2348
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2407 with a disjoint variable condition, which does not require ax-13 2380. See cbvexvw 2036 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2409 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexv1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf1 . . . . 5 𝑦𝜑
21nfn 1856 . . . 4 𝑦 ¬ 𝜑
3 cbvalv1.nf2 . . . . 5 𝑥𝜓
43nfn 1856 . . . 4 𝑥 ¬ 𝜓
5 cbvalv1.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
65notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
72, 4, 6cbvalv1 2347 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
8 alnex 1779 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
9 alnex 1779 . . 3 (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓)
107, 8, 93bitr3i 301 . 2 (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓)
1110con4bii 321 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1535  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  sb8ef  2361  exsb  2365  mof  2566  euf  2579  cbveuw  2609  eqvincf  3663  rexab2  3721  euabsn  4751  eluniab  4945  cbvopab1  5241  cbvopab1g  5242  cbvopab2  5243  cbvopab1s  5244  axrep1  5304  axrep2  5306  axrep4  5308  opeliunxp  5767  dfdmf  5921  dfrnf  5975  elrnmpt1  5983  cbvoprab1  7537  cbvoprab2  7538  opabex3d  8006  opabex3rd  8007  opabex3  8008  zfcndrep  10683  fsum2dlem  15818  fprod2dlem  16028  2ndresdju  32667  bnj1146  34767  bnj607  34892  bnj1228  34987  fineqvrep  35071  poimirlem26  37606  sbcexf  38075  elunif  44916  stoweidlem46  45967  opeliun2xp  48057
  Copyright terms: Public domain W3C validator