![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexv1 | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2396 with a disjoint variable condition, which does not require ax-13 2369. See cbvexvw 2038 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2398 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
3 | cbvalv1.nf2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
5 | cbvalv1.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 5 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
7 | 2, 4, 6 | cbvalv1 2335 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
8 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
9 | alnex 1781 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓) | |
10 | 7, 8, 9 | 3bitr3i 300 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓) |
11 | 10 | con4bii 320 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1779 Ⅎwnf 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-11 2152 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ex 1780 df-nf 1784 |
This theorem is referenced by: sb8ef 2349 exsb 2353 mof 2555 euf 2568 cbveuw 2599 clelabOLD 2878 eqvincf 3637 rexab2 3694 euabsn 4729 eluniab 4922 cbvopab1 5222 cbvopab1g 5223 cbvopab2 5224 cbvopab1s 5225 axrep1 5285 axrep2 5287 axrep4 5289 opeliunxp 5742 dfdmf 5895 dfrnf 5948 elrnmpt1 5956 cbvoprab1 7498 cbvoprab2 7499 opabex3d 7954 opabex3rd 7955 opabex3 7956 zfcndrep 10611 fsum2dlem 15720 fprod2dlem 15928 2ndresdju 32141 bnj1146 34100 bnj607 34225 bnj1228 34320 fineqvrep 34393 poimirlem26 36817 sbcexf 37286 elunif 44002 stoweidlem46 45060 opeliun2xp 47096 |
Copyright terms: Public domain | W3C validator |