MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexv1 Structured version   Visualization version   GIF version

Theorem cbvexv1 2342
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2402 with a disjoint variable condition, which does not require ax-13 2375. See cbvexvw 2035 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2404 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexv1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf1 . . . . 5 𝑦𝜑
21nfn 1856 . . . 4 𝑦 ¬ 𝜑
3 cbvalv1.nf2 . . . . 5 𝑥𝜓
43nfn 1856 . . . 4 𝑥 ¬ 𝜓
5 cbvalv1.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
65notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
72, 4, 6cbvalv1 2341 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
8 alnex 1780 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
9 alnex 1780 . . 3 (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓)
107, 8, 93bitr3i 301 . 2 (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓)
1110con4bii 321 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1537  wex 1778  wnf 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-11 2156  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783
This theorem is referenced by:  sb8ef  2356  exsb  2360  mof  2561  euf  2574  cbveuw  2604  eqvincf  3633  rexab2  3687  euabsn  4706  eluniab  4901  cbvopab1  5197  cbvopab1g  5198  cbvopab2  5199  cbvopab1s  5200  axrep1  5260  axrep2  5262  axrep4OLD  5266  opeliunxp  5732  opeliun2xp  5733  dfdmf  5887  dfrnf  5941  elrnmpt1  5951  cbvoprab1  7502  cbvoprab2  7503  opabex3d  7972  opabex3rd  7973  opabex3  7974  zfcndrep  10636  fsum2dlem  15789  fprod2dlem  15999  2ndresdju  32595  bnj1146  34780  bnj607  34905  bnj1228  35000  fineqvrep  35084  poimirlem26  37628  sbcexf  38097  elunif  44993  stoweidlem46  46033
  Copyright terms: Public domain W3C validator