MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexv1 Structured version   Visualization version   GIF version

Theorem cbvexv1 2332
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2392 with a disjoint variable condition, which does not require ax-13 2365. See cbvexvw 2032 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2394 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexv1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf1 . . . . 5 𝑦𝜑
21nfn 1852 . . . 4 𝑦 ¬ 𝜑
3 cbvalv1.nf2 . . . . 5 𝑥𝜓
43nfn 1852 . . . 4 𝑥 ¬ 𝜓
5 cbvalv1.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
65notbid 317 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
72, 4, 6cbvalv1 2331 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
8 alnex 1775 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
9 alnex 1775 . . 3 (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓)
107, 8, 93bitr3i 300 . 2 (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓)
1110con4bii 320 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1531  wex 1773  wnf 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778
This theorem is referenced by:  sb8ef  2345  exsb  2349  mof  2551  euf  2564  cbveuw  2594  clelabOLD  2872  eqvincf  3633  rexab2  3691  euabsn  4732  eluniab  4923  cbvopab1  5224  cbvopab1g  5225  cbvopab2  5226  cbvopab1s  5227  axrep1  5287  axrep2  5289  axrep4  5291  opeliunxp  5745  dfdmf  5899  dfrnf  5952  elrnmpt1  5960  cbvoprab1  7507  cbvoprab2  7508  opabex3d  7970  opabex3rd  7971  opabex3  7972  zfcndrep  10639  fsum2dlem  15752  fprod2dlem  15960  2ndresdju  32516  bnj1146  34553  bnj607  34678  bnj1228  34773  fineqvrep  34846  poimirlem26  37250  sbcexf  37719  elunif  44520  stoweidlem46  45572  opeliun2xp  47582
  Copyright terms: Public domain W3C validator