MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexv1 Structured version   Visualization version   GIF version

Theorem cbvexv1 2336
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2396 with a disjoint variable condition, which does not require ax-13 2369. See cbvexvw 2038 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2398 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexv1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf1 . . . . 5 𝑦𝜑
21nfn 1858 . . . 4 𝑦 ¬ 𝜑
3 cbvalv1.nf2 . . . . 5 𝑥𝜓
43nfn 1858 . . . 4 𝑥 ¬ 𝜓
5 cbvalv1.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
65notbid 317 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
72, 4, 6cbvalv1 2335 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
8 alnex 1781 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
9 alnex 1781 . . 3 (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓)
107, 8, 93bitr3i 300 . 2 (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓)
1110con4bii 320 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-11 2152  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ex 1780  df-nf 1784
This theorem is referenced by:  sb8ef  2349  exsb  2353  mof  2555  euf  2568  cbveuw  2599  clelabOLD  2878  eqvincf  3637  rexab2  3694  euabsn  4729  eluniab  4922  cbvopab1  5222  cbvopab1g  5223  cbvopab2  5224  cbvopab1s  5225  axrep1  5285  axrep2  5287  axrep4  5289  opeliunxp  5742  dfdmf  5895  dfrnf  5948  elrnmpt1  5956  cbvoprab1  7498  cbvoprab2  7499  opabex3d  7954  opabex3rd  7955  opabex3  7956  zfcndrep  10611  fsum2dlem  15720  fprod2dlem  15928  2ndresdju  32141  bnj1146  34100  bnj607  34225  bnj1228  34320  fineqvrep  34393  poimirlem26  36817  sbcexf  37286  elunif  44002  stoweidlem46  45060  opeliun2xp  47096
  Copyright terms: Public domain W3C validator