![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexv1 | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2392 with a disjoint variable condition, which does not require ax-13 2365. See cbvexvw 2032 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2394 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfn 1852 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
3 | cbvalv1.nf2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | nfn 1852 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
5 | cbvalv1.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 5 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
7 | 2, 4, 6 | cbvalv1 2331 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
8 | alnex 1775 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
9 | alnex 1775 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓) | |
10 | 7, 8, 9 | 3bitr3i 300 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓) |
11 | 10 | con4bii 320 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1531 ∃wex 1773 Ⅎwnf 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-11 2146 ax-12 2166 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-nf 1778 |
This theorem is referenced by: sb8ef 2345 exsb 2349 mof 2551 euf 2564 cbveuw 2594 clelabOLD 2872 eqvincf 3634 rexab2 3692 euabsn 4731 eluniab 4922 cbvopab1 5223 cbvopab1g 5224 cbvopab2 5225 cbvopab1s 5226 axrep1 5286 axrep2 5288 axrep4 5290 opeliunxp 5744 dfdmf 5898 dfrnf 5951 elrnmpt1 5959 cbvoprab1 7505 cbvoprab2 7506 opabex3d 7968 opabex3rd 7969 opabex3 7970 zfcndrep 10637 fsum2dlem 15748 fprod2dlem 15956 2ndresdju 32492 bnj1146 34492 bnj607 34617 bnj1228 34712 fineqvrep 34785 poimirlem26 37189 sbcexf 37658 elunif 44443 stoweidlem46 45497 opeliun2xp 47508 |
Copyright terms: Public domain | W3C validator |