![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexv1 | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2393 with a disjoint variable condition, which does not require ax-13 2366. See cbvexvw 2033 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2395 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfn 1853 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
3 | cbvalv1.nf2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | nfn 1853 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
5 | cbvalv1.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 5 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
7 | 2, 4, 6 | cbvalv1 2332 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
8 | alnex 1776 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
9 | alnex 1776 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓) | |
10 | 7, 8, 9 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓) |
11 | 10 | con4bii 321 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1532 ∃wex 1774 Ⅎwnf 1778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-11 2147 ax-12 2164 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-nf 1779 |
This theorem is referenced by: sb8ef 2346 exsb 2350 mof 2552 euf 2565 cbveuw 2596 clelabOLD 2875 eqvincf 3634 rexab2 3692 euabsn 4726 eluniab 4917 cbvopab1 5217 cbvopab1g 5218 cbvopab2 5219 cbvopab1s 5220 axrep1 5280 axrep2 5282 axrep4 5284 opeliunxp 5739 dfdmf 5893 dfrnf 5946 elrnmpt1 5954 cbvoprab1 7501 cbvoprab2 7502 opabex3d 7963 opabex3rd 7964 opabex3 7965 zfcndrep 10629 fsum2dlem 15740 fprod2dlem 15948 2ndresdju 32418 bnj1146 34358 bnj607 34483 bnj1228 34578 fineqvrep 34651 poimirlem26 37054 sbcexf 37523 elunif 44301 stoweidlem46 45357 opeliun2xp 47319 |
Copyright terms: Public domain | W3C validator |