![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvexv1 | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2407 with a disjoint variable condition, which does not require ax-13 2380. See cbvexvw 2036 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2409 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfn 1856 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
3 | cbvalv1.nf2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | nfn 1856 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
5 | cbvalv1.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 5 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
7 | 2, 4, 6 | cbvalv1 2347 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
8 | alnex 1779 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
9 | alnex 1779 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓) | |
10 | 7, 8, 9 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓) |
11 | 10 | con4bii 321 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: sb8ef 2361 exsb 2365 mof 2566 euf 2579 cbveuw 2609 eqvincf 3663 rexab2 3721 euabsn 4751 eluniab 4945 cbvopab1 5241 cbvopab1g 5242 cbvopab2 5243 cbvopab1s 5244 axrep1 5304 axrep2 5306 axrep4 5308 opeliunxp 5767 dfdmf 5921 dfrnf 5975 elrnmpt1 5983 cbvoprab1 7537 cbvoprab2 7538 opabex3d 8006 opabex3rd 8007 opabex3 8008 zfcndrep 10683 fsum2dlem 15818 fprod2dlem 16028 2ndresdju 32667 bnj1146 34767 bnj607 34892 bnj1228 34987 fineqvrep 35071 poimirlem26 37606 sbcexf 38075 elunif 44916 stoweidlem46 45967 opeliun2xp 48057 |
Copyright terms: Public domain | W3C validator |