MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexv1 Structured version   Visualization version   GIF version

Theorem cbvexv1 2340
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2398 with a disjoint variable condition, which does not require ax-13 2371. See cbvexvw 2037 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2400 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexv1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf1 . . . . 5 𝑦𝜑
21nfn 1857 . . . 4 𝑦 ¬ 𝜑
3 cbvalv1.nf2 . . . . 5 𝑥𝜓
43nfn 1857 . . . 4 𝑥 ¬ 𝜓
5 cbvalv1.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
65notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
72, 4, 6cbvalv1 2339 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
8 alnex 1781 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
9 alnex 1781 . . 3 (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓)
107, 8, 93bitr3i 301 . 2 (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓)
1110con4bii 321 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  sb8ef  2354  exsb  2358  mof  2557  euf  2570  cbveuw  2600  eqvincf  3619  rexab2  3672  euabsn  4692  eluniab  4887  cbvopab1  5183  cbvopab1g  5184  cbvopab2  5185  cbvopab1s  5186  axrep1  5237  axrep2  5239  axrep4OLD  5243  opeliunxp  5707  opeliun2xp  5708  dfdmf  5862  dfrnf  5916  elrnmpt1  5926  cbvoprab1  7478  cbvoprab2  7479  opabex3d  7946  opabex3rd  7947  opabex3  7948  zfcndrep  10573  fsum2dlem  15742  fprod2dlem  15952  2ndresdju  32579  bnj1146  34787  bnj607  34912  bnj1228  35007  fineqvrep  35091  poimirlem26  37635  sbcexf  38104  elunif  45003  stoweidlem46  46037
  Copyright terms: Public domain W3C validator