Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvexv1 | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2401 with a disjoint variable condition, which does not require ax-13 2374. See cbvexvw 2044 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2403 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalv1.nf1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfn 1864 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
3 | cbvalv1.nf2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
4 | 3 | nfn 1864 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
5 | cbvalv1.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 5 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
7 | 2, 4, 6 | cbvalv1 2342 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
8 | alnex 1788 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
9 | alnex 1788 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓) | |
10 | 7, 8, 9 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓) |
11 | 10 | con4bii 321 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1540 ∃wex 1786 Ⅎwnf 1790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1787 df-nf 1791 |
This theorem is referenced by: sb8ev 2355 exsb 2359 mof 2565 euf 2578 cbveuw 2609 clelabOLD 2886 issetf 3445 eqvincf 3581 rexab2 3639 rexab2OLD 3640 euabsn 4668 eluniab 4860 cbvopab1 5154 cbvopab1g 5155 cbvopab2 5156 cbvopab1s 5157 axrep1 5215 axrep2 5217 axrep4 5219 opeliunxp 5655 dfdmf 5804 dfrnf 5858 elrnmpt1 5866 cbvoprab1 7356 cbvoprab2 7357 opabex3d 7801 opabex3rd 7802 opabex3 7803 zfcndrep 10371 fsum2dlem 15480 fprod2dlem 15688 2ndresdju 30982 bnj1146 32767 bnj607 32892 bnj1228 32987 fineqvrep 33060 poimirlem26 35799 sbcexf 36269 elunif 42529 stoweidlem46 43558 opeliun2xp 45637 |
Copyright terms: Public domain | W3C validator |