MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexv1 Structured version   Visualization version   GIF version

Theorem cbvexv1 2340
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2397 with a disjoint variable condition, which does not require ax-13 2370. See cbvexvw 2037 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2399 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexv1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf1 . . . . 5 𝑦𝜑
21nfn 1857 . . . 4 𝑦 ¬ 𝜑
3 cbvalv1.nf2 . . . . 5 𝑥𝜓
43nfn 1857 . . . 4 𝑥 ¬ 𝜓
5 cbvalv1.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
65notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
72, 4, 6cbvalv1 2339 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
8 alnex 1781 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
9 alnex 1781 . . 3 (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓)
107, 8, 93bitr3i 301 . 2 (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓)
1110con4bii 321 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  sb8ef  2353  exsb  2357  mof  2556  euf  2569  cbveuw  2599  eqvincf  3607  rexab2  3661  euabsn  4680  eluniab  4875  cbvopab1  5169  cbvopab1g  5170  cbvopab2  5171  cbvopab1s  5172  axrep1  5222  axrep2  5224  axrep4OLD  5228  opeliunxp  5690  opeliun2xp  5691  dfdmf  5843  dfrnf  5896  elrnmpt1  5906  cbvoprab1  7440  cbvoprab2  7441  opabex3d  7907  opabex3rd  7908  opabex3  7909  zfcndrep  10527  fsum2dlem  15695  fprod2dlem  15905  2ndresdju  32606  bnj1146  34757  bnj607  34882  bnj1228  34977  fineqvrep  35069  poimirlem26  37625  sbcexf  38094  elunif  44994  stoweidlem46  46028
  Copyright terms: Public domain W3C validator