| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexv1 | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2399 with a disjoint variable condition, which does not require ax-13 2372. See cbvexvw 2038 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2401 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
| cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalv1.nf1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 3 | cbvalv1.nf2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 5 | cbvalv1.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 7 | 2, 4, 6 | cbvalv1 2341 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 8 | alnex 1782 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 9 | alnex 1782 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓) | |
| 10 | 7, 8, 9 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓) |
| 11 | 10 | con4bii 321 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: sb8ef 2355 exsb 2359 mof 2558 euf 2571 cbveuw 2601 eqvincf 3600 rexab2 3653 euabsn 4678 eluniab 4872 cbvopab1 5167 cbvopab1g 5168 cbvopab2 5169 cbvopab1s 5170 axrep1 5220 axrep2 5222 axrep4OLD 5226 opeliunxp 5686 opeliun2xp 5687 dfdmf 5841 dfrnf 5895 elrnmpt1 5905 cbvoprab1 7439 cbvoprab2 7440 opabex3d 7903 opabex3rd 7904 opabex3 7905 zfcndrep 10511 fsum2dlem 15683 fprod2dlem 15893 2ndresdju 32638 bnj1146 34810 bnj607 34935 bnj1228 35030 fineqvrep 35144 poimirlem26 37692 sbcexf 38161 elunif 45118 stoweidlem46 46149 |
| Copyright terms: Public domain | W3C validator |