MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexv1 Structured version   Visualization version   GIF version

Theorem cbvexv1 2340
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2397 with a disjoint variable condition, which does not require ax-13 2370. See cbvexvw 2037 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2399 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexv1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf1 . . . . 5 𝑦𝜑
21nfn 1857 . . . 4 𝑦 ¬ 𝜑
3 cbvalv1.nf2 . . . . 5 𝑥𝜓
43nfn 1857 . . . 4 𝑥 ¬ 𝜓
5 cbvalv1.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
65notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
72, 4, 6cbvalv1 2339 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
8 alnex 1781 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
9 alnex 1781 . . 3 (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓)
107, 8, 93bitr3i 301 . 2 (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓)
1110con4bii 321 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  sb8ef  2353  exsb  2357  mof  2556  euf  2569  cbveuw  2599  eqvincf  3616  rexab2  3670  euabsn  4690  eluniab  4885  cbvopab1  5181  cbvopab1g  5182  cbvopab2  5183  cbvopab1s  5184  axrep1  5235  axrep2  5237  axrep4OLD  5241  opeliunxp  5705  opeliun2xp  5706  dfdmf  5860  dfrnf  5914  elrnmpt1  5924  cbvoprab1  7476  cbvoprab2  7477  opabex3d  7944  opabex3rd  7945  opabex3  7946  zfcndrep  10567  fsum2dlem  15736  fprod2dlem  15946  2ndresdju  32573  bnj1146  34781  bnj607  34906  bnj1228  35001  fineqvrep  35085  poimirlem26  37640  sbcexf  38109  elunif  45010  stoweidlem46  46044
  Copyright terms: Public domain W3C validator