| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexv1 | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2397 with a disjoint variable condition, which does not require ax-13 2370. See cbvexvw 2037 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2399 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
| cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalv1.nf1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 3 | cbvalv1.nf2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 5 | cbvalv1.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 7 | 2, 4, 6 | cbvalv1 2339 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 8 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 9 | alnex 1781 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓) | |
| 10 | 7, 8, 9 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓) |
| 11 | 10 | con4bii 321 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sb8ef 2353 exsb 2357 mof 2556 euf 2569 cbveuw 2599 eqvincf 3607 rexab2 3661 euabsn 4680 eluniab 4875 cbvopab1 5169 cbvopab1g 5170 cbvopab2 5171 cbvopab1s 5172 axrep1 5222 axrep2 5224 axrep4OLD 5228 opeliunxp 5690 opeliun2xp 5691 dfdmf 5843 dfrnf 5896 elrnmpt1 5906 cbvoprab1 7440 cbvoprab2 7441 opabex3d 7907 opabex3rd 7908 opabex3 7909 zfcndrep 10527 fsum2dlem 15695 fprod2dlem 15905 2ndresdju 32606 bnj1146 34757 bnj607 34882 bnj1228 34977 fineqvrep 35069 poimirlem26 37625 sbcexf 38094 elunif 44994 stoweidlem46 46028 |
| Copyright terms: Public domain | W3C validator |