| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexv1 | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2398 with a disjoint variable condition, which does not require ax-13 2371. See cbvexvw 2037 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2400 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
| cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalv1.nf1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 3 | cbvalv1.nf2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 5 | cbvalv1.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 7 | 2, 4, 6 | cbvalv1 2339 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 8 | alnex 1781 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 9 | alnex 1781 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓) | |
| 10 | 7, 8, 9 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓) |
| 11 | 10 | con4bii 321 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: sb8ef 2354 exsb 2358 mof 2557 euf 2570 cbveuw 2600 eqvincf 3619 rexab2 3672 euabsn 4692 eluniab 4887 cbvopab1 5183 cbvopab1g 5184 cbvopab2 5185 cbvopab1s 5186 axrep1 5237 axrep2 5239 axrep4OLD 5243 opeliunxp 5707 opeliun2xp 5708 dfdmf 5862 dfrnf 5916 elrnmpt1 5926 cbvoprab1 7478 cbvoprab2 7479 opabex3d 7946 opabex3rd 7947 opabex3 7948 zfcndrep 10573 fsum2dlem 15742 fprod2dlem 15952 2ndresdju 32579 bnj1146 34787 bnj607 34912 bnj1228 35007 fineqvrep 35091 poimirlem26 37635 sbcexf 38104 elunif 45003 stoweidlem46 46037 |
| Copyright terms: Public domain | W3C validator |