MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexv1 Structured version   Visualization version   GIF version

Theorem cbvexv1 2342
Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2399 with a disjoint variable condition, which does not require ax-13 2372. See cbvexvw 2038 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2401 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1 𝑦𝜑
cbvalv1.nf2 𝑥𝜓
cbvalv1.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexv1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvexv1
StepHypRef Expression
1 cbvalv1.nf1 . . . . 5 𝑦𝜑
21nfn 1858 . . . 4 𝑦 ¬ 𝜑
3 cbvalv1.nf2 . . . . 5 𝑥𝜓
43nfn 1858 . . . 4 𝑥 ¬ 𝜓
5 cbvalv1.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
65notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
72, 4, 6cbvalv1 2341 . . 3 (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓)
8 alnex 1782 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
9 alnex 1782 . . 3 (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓)
107, 8, 93bitr3i 301 . 2 (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓)
1110con4bii 321 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1539  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  sb8ef  2355  exsb  2359  mof  2558  euf  2571  cbveuw  2601  eqvincf  3600  rexab2  3653  euabsn  4678  eluniab  4872  cbvopab1  5167  cbvopab1g  5168  cbvopab2  5169  cbvopab1s  5170  axrep1  5220  axrep2  5222  axrep4OLD  5226  opeliunxp  5686  opeliun2xp  5687  dfdmf  5841  dfrnf  5895  elrnmpt1  5905  cbvoprab1  7439  cbvoprab2  7440  opabex3d  7903  opabex3rd  7904  opabex3  7905  zfcndrep  10511  fsum2dlem  15683  fprod2dlem  15893  2ndresdju  32638  bnj1146  34810  bnj607  34935  bnj1228  35030  fineqvrep  35144  poimirlem26  37692  sbcexf  38161  elunif  45118  stoweidlem46  46149
  Copyright terms: Public domain W3C validator