| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvexv1 | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvex 2402 with a disjoint variable condition, which does not require ax-13 2375. See cbvexvw 2035 for a version with two disjoint variable conditions, requiring fewer axioms, and cbvexv 2404 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.) |
| Ref | Expression |
|---|---|
| cbvalv1.nf1 | ⊢ Ⅎ𝑦𝜑 |
| cbvalv1.nf2 | ⊢ Ⅎ𝑥𝜓 |
| cbvalv1.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvexv1 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalv1.nf1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | nfn 1856 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 3 | cbvalv1.nf2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | nfn 1856 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 5 | cbvalv1.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 7 | 2, 4, 6 | cbvalv1 2341 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑦 ¬ 𝜓) |
| 8 | alnex 1780 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 9 | alnex 1780 | . . 3 ⊢ (∀𝑦 ¬ 𝜓 ↔ ¬ ∃𝑦𝜓) | |
| 10 | 7, 8, 9 | 3bitr3i 301 | . 2 ⊢ (¬ ∃𝑥𝜑 ↔ ¬ ∃𝑦𝜓) |
| 11 | 10 | con4bii 321 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 ∃wex 1778 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: sb8ef 2356 exsb 2360 mof 2561 euf 2574 cbveuw 2604 eqvincf 3633 rexab2 3687 euabsn 4706 eluniab 4901 cbvopab1 5197 cbvopab1g 5198 cbvopab2 5199 cbvopab1s 5200 axrep1 5260 axrep2 5262 axrep4OLD 5266 opeliunxp 5732 opeliun2xp 5733 dfdmf 5887 dfrnf 5941 elrnmpt1 5951 cbvoprab1 7502 cbvoprab2 7503 opabex3d 7972 opabex3rd 7973 opabex3 7974 zfcndrep 10636 fsum2dlem 15789 fprod2dlem 15999 2ndresdju 32595 bnj1146 34780 bnj607 34905 bnj1228 35000 fineqvrep 35084 poimirlem26 37628 sbcexf 38097 elunif 44993 stoweidlem46 46033 |
| Copyright terms: Public domain | W3C validator |