MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fingch Structured version   Visualization version   GIF version

Theorem fingch 10667
Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
fingch Fin ⊆ GCH

Proof of Theorem fingch
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4189 . 2 Fin ⊆ (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥𝑦𝑦 ≺ 𝒫 𝑥)})
2 df-gch 10665 . 2 GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥𝑦𝑦 ≺ 𝒫 𝑥)})
31, 2sseqtrri 4034 1 Fin ⊆ GCH
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1536  {cab 2713  cun 3962  wss 3964  𝒫 cpw 4606   class class class wbr 5149  csdm 8989  Fincfn 8990  GCHcgch 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1541  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3969  df-ss 3981  df-gch 10665
This theorem is referenced by:  gch2  10719
  Copyright terms: Public domain W3C validator