![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fingch | Structured version Visualization version GIF version |
Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
fingch | ⊢ Fin ⊆ GCH |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4189 | . 2 ⊢ Fin ⊆ (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | |
2 | df-gch 10665 | . 2 ⊢ GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | |
3 | 1, 2 | sseqtrri 4034 | 1 ⊢ Fin ⊆ GCH |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1536 {cab 2713 ∪ cun 3962 ⊆ wss 3964 𝒫 cpw 4606 class class class wbr 5149 ≺ csdm 8989 Fincfn 8990 GCHcgch 10664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1541 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3969 df-ss 3981 df-gch 10665 |
This theorem is referenced by: gch2 10719 |
Copyright terms: Public domain | W3C validator |