![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fingch | Structured version Visualization version GIF version |
Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
fingch | ⊢ Fin ⊆ GCH |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4164 | . 2 ⊢ Fin ⊆ (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | |
2 | df-gch 10611 | . 2 ⊢ GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | |
3 | 1, 2 | sseqtrri 4011 | 1 ⊢ Fin ⊆ GCH |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1531 {cab 2701 ∪ cun 3938 ⊆ wss 3940 𝒫 cpw 4594 class class class wbr 5138 ≺ csdm 8933 Fincfn 8934 GCHcgch 10610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3945 df-in 3947 df-ss 3957 df-gch 10611 |
This theorem is referenced by: gch2 10665 |
Copyright terms: Public domain | W3C validator |