MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fingch Structured version   Visualization version   GIF version

Theorem fingch 10310
Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
fingch Fin ⊆ GCH

Proof of Theorem fingch
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4102 . 2 Fin ⊆ (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥𝑦𝑦 ≺ 𝒫 𝑥)})
2 df-gch 10308 . 2 GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥𝑦𝑦 ≺ 𝒫 𝑥)})
31, 2sseqtrri 3954 1 Fin ⊆ GCH
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1537  {cab 2715  cun 3881  wss 3883  𝒫 cpw 4530   class class class wbr 5070  csdm 8690  Fincfn 8691  GCHcgch 10307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-gch 10308
This theorem is referenced by:  gch2  10362
  Copyright terms: Public domain W3C validator