MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fingch Structured version   Visualization version   GIF version

Theorem fingch 10582
Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
fingch Fin ⊆ GCH

Proof of Theorem fingch
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4143 . 2 Fin ⊆ (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥𝑦𝑦 ≺ 𝒫 𝑥)})
2 df-gch 10580 . 2 GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥𝑦𝑦 ≺ 𝒫 𝑥)})
31, 2sseqtrri 3998 1 Fin ⊆ GCH
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1538  {cab 2708  cun 3914  wss 3916  𝒫 cpw 4565   class class class wbr 5109  csdm 8919  Fincfn 8920  GCHcgch 10579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3921  df-ss 3933  df-gch 10580
This theorem is referenced by:  gch2  10634
  Copyright terms: Public domain W3C validator