Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fingch | Structured version Visualization version GIF version |
Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
fingch | ⊢ Fin ⊆ GCH |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4106 | . 2 ⊢ Fin ⊆ (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | |
2 | df-gch 10377 | . 2 ⊢ GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | |
3 | 1, 2 | sseqtrri 3958 | 1 ⊢ Fin ⊆ GCH |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∀wal 1537 {cab 2715 ∪ cun 3885 ⊆ wss 3887 𝒫 cpw 4533 class class class wbr 5074 ≺ csdm 8732 Fincfn 8733 GCHcgch 10376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-gch 10377 |
This theorem is referenced by: gch2 10431 |
Copyright terms: Public domain | W3C validator |