| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fingch | Structured version Visualization version GIF version | ||
| Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| fingch | ⊢ Fin ⊆ GCH |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4143 | . 2 ⊢ Fin ⊆ (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | |
| 2 | df-gch 10580 | . 2 ⊢ GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | |
| 3 | 1, 2 | sseqtrri 3998 | 1 ⊢ Fin ⊆ GCH |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1538 {cab 2708 ∪ cun 3914 ⊆ wss 3916 𝒫 cpw 4565 class class class wbr 5109 ≺ csdm 8919 Fincfn 8920 GCHcgch 10579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3921 df-ss 3933 df-gch 10580 |
| This theorem is referenced by: gch2 10634 |
| Copyright terms: Public domain | W3C validator |