| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fingch | Structured version Visualization version GIF version | ||
| Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| fingch | ⊢ Fin ⊆ GCH |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4151 | . 2 ⊢ Fin ⊆ (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | |
| 2 | df-gch 10627 | . 2 ⊢ GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | |
| 3 | 1, 2 | sseqtrri 4006 | 1 ⊢ Fin ⊆ GCH |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1537 {cab 2712 ∪ cun 3922 ⊆ wss 3924 𝒫 cpw 4573 class class class wbr 5116 ≺ csdm 8952 Fincfn 8953 GCHcgch 10626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-un 3929 df-ss 3941 df-gch 10627 |
| This theorem is referenced by: gch2 10681 |
| Copyright terms: Public domain | W3C validator |