MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgch Structured version   Visualization version   GIF version

Theorem elgch 10201
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elgch (𝐴𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elgch
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-gch 10200 . . . 4 GCH = (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)})
21eleq2i 2822 . . 3 (𝐴 ∈ GCH ↔ 𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
3 elun 4049 . . 3 (𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
42, 3bitri 278 . 2 (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
5 breq1 5042 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
6 pweq 4515 . . . . . . . 8 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
76breq2d 5051 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 ≺ 𝒫 𝑦𝑥 ≺ 𝒫 𝐴))
85, 7anbi12d 634 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
98notbid 321 . . . . 5 (𝑦 = 𝐴 → (¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
109albidv 1928 . . . 4 (𝑦 = 𝐴 → (∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1110elabg 3574 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)} ↔ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1211orbi2d 916 . 2 (𝐴𝑉 → ((𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
134, 12syl5bb 286 1 (𝐴𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  wal 1541   = wceq 1543  wcel 2112  {cab 2714  cun 3851  𝒫 cpw 4499   class class class wbr 5039  csdm 8603  Fincfn 8604  GCHcgch 10199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-gch 10200
This theorem is referenced by:  gchi  10203  engch  10207  hargch  10252  alephgch  10253
  Copyright terms: Public domain W3C validator