![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elgch | Structured version Visualization version GIF version |
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
elgch | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gch 10653 | . . . 4 ⊢ GCH = (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) | |
2 | 1 | eleq2i 2818 | . . 3 ⊢ (𝐴 ∈ GCH ↔ 𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) |
3 | elun 4146 | . . 3 ⊢ (𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) |
5 | breq1 5147 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ≺ 𝑥 ↔ 𝐴 ≺ 𝑥)) | |
6 | pweq 4612 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
7 | 6 | breq2d 5156 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ≺ 𝒫 𝑦 ↔ 𝑥 ≺ 𝒫 𝐴)) |
8 | 5, 7 | anbi12d 630 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
9 | 8 | notbid 317 | . . . . 5 ⊢ (𝑦 = 𝐴 → (¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
10 | 9 | albidv 1916 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
11 | 10 | elabg 3664 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)} ↔ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
12 | 11 | orbi2d 913 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
13 | 4, 12 | bitrid 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 ∀wal 1532 = wceq 1534 ∈ wcel 2099 {cab 2703 ∪ cun 3945 𝒫 cpw 4598 class class class wbr 5144 ≺ csdm 8963 Fincfn 8964 GCHcgch 10652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3421 df-v 3465 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-gch 10653 |
This theorem is referenced by: gchi 10656 engch 10660 hargch 10705 alephgch 10706 |
Copyright terms: Public domain | W3C validator |