![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elgch | Structured version Visualization version GIF version |
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
elgch | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gch 10616 | . . . 4 ⊢ GCH = (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) | |
2 | 1 | eleq2i 2826 | . . 3 ⊢ (𝐴 ∈ GCH ↔ 𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) |
3 | elun 4149 | . . 3 ⊢ (𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) |
5 | breq1 5152 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ≺ 𝑥 ↔ 𝐴 ≺ 𝑥)) | |
6 | pweq 4617 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
7 | 6 | breq2d 5161 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ≺ 𝒫 𝑦 ↔ 𝑥 ≺ 𝒫 𝐴)) |
8 | 5, 7 | anbi12d 632 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
9 | 8 | notbid 318 | . . . . 5 ⊢ (𝑦 = 𝐴 → (¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
10 | 9 | albidv 1924 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
11 | 10 | elabg 3667 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)} ↔ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
12 | 11 | orbi2d 915 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
13 | 4, 12 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∀wal 1540 = wceq 1542 ∈ wcel 2107 {cab 2710 ∪ cun 3947 𝒫 cpw 4603 class class class wbr 5149 ≺ csdm 8938 Fincfn 8939 GCHcgch 10615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-gch 10616 |
This theorem is referenced by: gchi 10619 engch 10623 hargch 10668 alephgch 10669 |
Copyright terms: Public domain | W3C validator |