| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elgch | Structured version Visualization version GIF version | ||
| Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| elgch | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gch 10580 | . . . 4 ⊢ GCH = (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) | |
| 2 | 1 | eleq2i 2821 | . . 3 ⊢ (𝐴 ∈ GCH ↔ 𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) |
| 3 | elun 4118 | . . 3 ⊢ (𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) |
| 5 | breq1 5112 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ≺ 𝑥 ↔ 𝐴 ≺ 𝑥)) | |
| 6 | pweq 4579 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
| 7 | 6 | breq2d 5121 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ≺ 𝒫 𝑦 ↔ 𝑥 ≺ 𝒫 𝐴)) |
| 8 | 5, 7 | anbi12d 632 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 9 | 8 | notbid 318 | . . . . 5 ⊢ (𝑦 = 𝐴 → (¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 10 | 9 | albidv 1920 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 11 | 10 | elabg 3645 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)} ↔ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 12 | 11 | orbi2d 915 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
| 13 | 4, 12 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∪ cun 3914 𝒫 cpw 4565 class class class wbr 5109 ≺ csdm 8919 Fincfn 8920 GCHcgch 10579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-gch 10580 |
| This theorem is referenced by: gchi 10583 engch 10587 hargch 10632 alephgch 10633 |
| Copyright terms: Public domain | W3C validator |