MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgch Structured version   Visualization version   GIF version

Theorem elgch 10617
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elgch (𝐴𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elgch
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-gch 10616 . . . 4 GCH = (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)})
21eleq2i 2826 . . 3 (𝐴 ∈ GCH ↔ 𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
3 elun 4149 . . 3 (𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
42, 3bitri 275 . 2 (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
5 breq1 5152 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
6 pweq 4617 . . . . . . . 8 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
76breq2d 5161 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 ≺ 𝒫 𝑦𝑥 ≺ 𝒫 𝐴))
85, 7anbi12d 632 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
98notbid 318 . . . . 5 (𝑦 = 𝐴 → (¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
109albidv 1924 . . . 4 (𝑦 = 𝐴 → (∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1110elabg 3667 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)} ↔ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1211orbi2d 915 . 2 (𝐴𝑉 → ((𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
134, 12bitrid 283 1 (𝐴𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  wal 1540   = wceq 1542  wcel 2107  {cab 2710  cun 3947  𝒫 cpw 4603   class class class wbr 5149  csdm 8938  Fincfn 8939  GCHcgch 10615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-gch 10616
This theorem is referenced by:  gchi  10619  engch  10623  hargch  10668  alephgch  10669
  Copyright terms: Public domain W3C validator