MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgch Structured version   Visualization version   GIF version

Theorem elgch 10457
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elgch (𝐴𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elgch
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-gch 10456 . . . 4 GCH = (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)})
21eleq2i 2828 . . 3 (𝐴 ∈ GCH ↔ 𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
3 elun 4093 . . 3 (𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
42, 3bitri 274 . 2 (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
5 breq1 5089 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
6 pweq 4558 . . . . . . . 8 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
76breq2d 5098 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 ≺ 𝒫 𝑦𝑥 ≺ 𝒫 𝐴))
85, 7anbi12d 631 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
98notbid 317 . . . . 5 (𝑦 = 𝐴 → (¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
109albidv 1922 . . . 4 (𝑦 = 𝐴 → (∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1110elabg 3616 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)} ↔ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1211orbi2d 913 . 2 (𝐴𝑉 → ((𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
134, 12bitrid 282 1 (𝐴𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  wal 1538   = wceq 1540  wcel 2105  {cab 2713  cun 3894  𝒫 cpw 4544   class class class wbr 5086  csdm 8781  Fincfn 8782  GCHcgch 10455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-br 5087  df-gch 10456
This theorem is referenced by:  gchi  10459  engch  10463  hargch  10508  alephgch  10509
  Copyright terms: Public domain W3C validator