Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elgch | Structured version Visualization version GIF version |
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
elgch | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gch 10361 | . . . 4 ⊢ GCH = (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) | |
2 | 1 | eleq2i 2831 | . . 3 ⊢ (𝐴 ∈ GCH ↔ 𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) |
3 | elun 4087 | . . 3 ⊢ (𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) |
5 | breq1 5081 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ≺ 𝑥 ↔ 𝐴 ≺ 𝑥)) | |
6 | pweq 4554 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
7 | 6 | breq2d 5090 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ≺ 𝒫 𝑦 ↔ 𝑥 ≺ 𝒫 𝐴)) |
8 | 5, 7 | anbi12d 630 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
9 | 8 | notbid 317 | . . . . 5 ⊢ (𝑦 = 𝐴 → (¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
10 | 9 | albidv 1926 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
11 | 10 | elabg 3608 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)} ↔ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
12 | 11 | orbi2d 912 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
13 | 4, 12 | syl5bb 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∀wal 1539 = wceq 1541 ∈ wcel 2109 {cab 2716 ∪ cun 3889 𝒫 cpw 4538 class class class wbr 5078 ≺ csdm 8706 Fincfn 8707 GCHcgch 10360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-gch 10361 |
This theorem is referenced by: gchi 10364 engch 10368 hargch 10413 alephgch 10414 |
Copyright terms: Public domain | W3C validator |