| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elgch | Structured version Visualization version GIF version | ||
| Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| elgch | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gch 10509 | . . . 4 ⊢ GCH = (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) | |
| 2 | 1 | eleq2i 2823 | . . 3 ⊢ (𝐴 ∈ GCH ↔ 𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) |
| 3 | elun 4103 | . . 3 ⊢ (𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)})) |
| 5 | breq1 5094 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ≺ 𝑥 ↔ 𝐴 ≺ 𝑥)) | |
| 6 | pweq 4564 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) | |
| 7 | 6 | breq2d 5103 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 ≺ 𝒫 𝑦 ↔ 𝑥 ≺ 𝒫 𝐴)) |
| 8 | 5, 7 | anbi12d 632 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 9 | 8 | notbid 318 | . . . . 5 ⊢ (𝑦 = 𝐴 → (¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 10 | 9 | albidv 1921 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦) ↔ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 11 | 10 | elabg 3632 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)} ↔ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 12 | 11 | orbi2d 915 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
| 13 | 4, 12 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 ∪ cun 3900 𝒫 cpw 4550 class class class wbr 5091 ≺ csdm 8868 Fincfn 8869 GCHcgch 10508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-gch 10509 |
| This theorem is referenced by: gchi 10512 engch 10516 hargch 10561 alephgch 10562 |
| Copyright terms: Public domain | W3C validator |