MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchi Structured version   Visualization version   GIF version

Theorem gchi 10311
Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchi ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)

Proof of Theorem gchi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relsdom 8698 . . . . . . 7 Rel ≺
21brrelex1i 5634 . . . . . 6 (𝐵 ≺ 𝒫 𝐴𝐵 ∈ V)
32adantl 481 . . . . 5 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐵 ∈ V)
4 breq2 5074 . . . . . . 7 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
5 breq1 5073 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 ≺ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
64, 5anbi12d 630 . . . . . 6 (𝑥 = 𝐵 → ((𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)))
76spcegv 3526 . . . . 5 (𝐵 ∈ V → ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
83, 7mpcom 38 . . . 4 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴))
9 df-ex 1784 . . . 4 (∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
108, 9sylib 217 . . 3 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
11 elgch 10309 . . . . . 6 (𝐴 ∈ GCH → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1211ibi 266 . . . . 5 (𝐴 ∈ GCH → (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1312orcomd 867 . . . 4 (𝐴 ∈ GCH → (∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ∨ 𝐴 ∈ Fin))
1413ord 860 . . 3 (𝐴 ∈ GCH → (¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin))
1510, 14syl5 34 . 2 (𝐴 ∈ GCH → ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin))
16153impib 1114 1 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  𝒫 cpw 4530   class class class wbr 5070  csdm 8690  Fincfn 8691  GCHcgch 10307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-dom 8693  df-sdom 8694  df-gch 10308
This theorem is referenced by:  gchen1  10312  gchen2  10313  gchpwdom  10357  gchaleph  10358
  Copyright terms: Public domain W3C validator