MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchi Structured version   Visualization version   GIF version

Theorem gchi 10616
Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchi ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)

Proof of Theorem gchi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relsdom 8943 . . . . . . 7 Rel ≺
21brrelex1i 5723 . . . . . 6 (𝐵 ≺ 𝒫 𝐴𝐵 ∈ V)
32adantl 481 . . . . 5 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐵 ∈ V)
4 breq2 5143 . . . . . . 7 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
5 breq1 5142 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 ≺ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
64, 5anbi12d 630 . . . . . 6 (𝑥 = 𝐵 → ((𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)))
76spcegv 3579 . . . . 5 (𝐵 ∈ V → ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
83, 7mpcom 38 . . . 4 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴))
9 df-ex 1774 . . . 4 (∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
108, 9sylib 217 . . 3 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
11 elgch 10614 . . . . . 6 (𝐴 ∈ GCH → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1211ibi 267 . . . . 5 (𝐴 ∈ GCH → (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1312orcomd 868 . . . 4 (𝐴 ∈ GCH → (∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ∨ 𝐴 ∈ Fin))
1413ord 861 . . 3 (𝐴 ∈ GCH → (¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin))
1510, 14syl5 34 . 2 (𝐴 ∈ GCH → ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin))
16153impib 1113 1 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844  w3a 1084  wal 1531   = wceq 1533  wex 1773  wcel 2098  Vcvv 3466  𝒫 cpw 4595   class class class wbr 5139  csdm 8935  Fincfn 8936  GCHcgch 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-dom 8938  df-sdom 8939  df-gch 10613
This theorem is referenced by:  gchen1  10617  gchen2  10618  gchpwdom  10662  gchaleph  10663
  Copyright terms: Public domain W3C validator