![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchi | Structured version Visualization version GIF version |
Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchi | ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8943 | . . . . . . 7 ⊢ Rel ≺ | |
2 | 1 | brrelex1i 5723 | . . . . . 6 ⊢ (𝐵 ≺ 𝒫 𝐴 → 𝐵 ∈ V) |
3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐵 ∈ V) |
4 | breq2 5143 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝐵)) | |
5 | breq1 5142 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝐵 ≺ 𝒫 𝐴)) | |
6 | 4, 5 | anbi12d 630 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ (𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴))) |
7 | 6 | spcegv 3579 | . . . . 5 ⊢ (𝐵 ∈ V → ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
8 | 3, 7 | mpcom 38 | . . . 4 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) |
9 | df-ex 1774 | . . . 4 ⊢ (∃𝑥(𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) | |
10 | 8, 9 | sylib 217 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → ¬ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) |
11 | elgch 10614 | . . . . . 6 ⊢ (𝐴 ∈ GCH → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | |
12 | 11 | ibi 267 | . . . . 5 ⊢ (𝐴 ∈ GCH → (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
13 | 12 | orcomd 868 | . . . 4 ⊢ (𝐴 ∈ GCH → (∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ∨ 𝐴 ∈ Fin)) |
14 | 13 | ord 861 | . . 3 ⊢ (𝐴 ∈ GCH → (¬ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)) |
15 | 10, 14 | syl5 34 | . 2 ⊢ (𝐴 ∈ GCH → ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)) |
16 | 15 | 3impib 1113 | 1 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3466 𝒫 cpw 4595 class class class wbr 5139 ≺ csdm 8935 Fincfn 8936 GCHcgch 10612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-xp 5673 df-rel 5674 df-dom 8938 df-sdom 8939 df-gch 10613 |
This theorem is referenced by: gchen1 10617 gchen2 10618 gchpwdom 10662 gchaleph 10663 |
Copyright terms: Public domain | W3C validator |