Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gchi | Structured version Visualization version GIF version |
Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchi | ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8740 | . . . . . . 7 ⊢ Rel ≺ | |
2 | 1 | brrelex1i 5643 | . . . . . 6 ⊢ (𝐵 ≺ 𝒫 𝐴 → 𝐵 ∈ V) |
3 | 2 | adantl 482 | . . . . 5 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐵 ∈ V) |
4 | breq2 5078 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝐵)) | |
5 | breq1 5077 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝐵 ≺ 𝒫 𝐴)) | |
6 | 4, 5 | anbi12d 631 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ (𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴))) |
7 | 6 | spcegv 3536 | . . . . 5 ⊢ (𝐵 ∈ V → ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
8 | 3, 7 | mpcom 38 | . . . 4 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) |
9 | df-ex 1783 | . . . 4 ⊢ (∃𝑥(𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) | |
10 | 8, 9 | sylib 217 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → ¬ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) |
11 | elgch 10378 | . . . . . 6 ⊢ (𝐴 ∈ GCH → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | |
12 | 11 | ibi 266 | . . . . 5 ⊢ (𝐴 ∈ GCH → (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
13 | 12 | orcomd 868 | . . . 4 ⊢ (𝐴 ∈ GCH → (∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ∨ 𝐴 ∈ Fin)) |
14 | 13 | ord 861 | . . 3 ⊢ (𝐴 ∈ GCH → (¬ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)) |
15 | 10, 14 | syl5 34 | . 2 ⊢ (𝐴 ∈ GCH → ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)) |
16 | 15 | 3impib 1115 | 1 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 𝒫 cpw 4533 class class class wbr 5074 ≺ csdm 8732 Fincfn 8733 GCHcgch 10376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dom 8735 df-sdom 8736 df-gch 10377 |
This theorem is referenced by: gchen1 10381 gchen2 10382 gchpwdom 10426 gchaleph 10427 |
Copyright terms: Public domain | W3C validator |