| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchi | Structured version Visualization version GIF version | ||
| Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| gchi | ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8966 | . . . . . . 7 ⊢ Rel ≺ | |
| 2 | 1 | brrelex1i 5710 | . . . . . 6 ⊢ (𝐵 ≺ 𝒫 𝐴 → 𝐵 ∈ V) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐵 ∈ V) |
| 4 | breq2 5123 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝐵)) | |
| 5 | breq1 5122 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ≺ 𝒫 𝐴 ↔ 𝐵 ≺ 𝒫 𝐴)) | |
| 6 | 4, 5 | anbi12d 632 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ (𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴))) |
| 7 | 6 | spcegv 3576 | . . . . 5 ⊢ (𝐵 ∈ V → ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 8 | 3, 7 | mpcom 38 | . . . 4 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) |
| 9 | df-ex 1780 | . . . 4 ⊢ (∃𝑥(𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ↔ ¬ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) | |
| 10 | 8, 9 | sylib 218 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → ¬ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)) |
| 11 | elgch 10636 | . . . . . 6 ⊢ (𝐴 ∈ GCH → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | |
| 12 | 11 | ibi 267 | . . . . 5 ⊢ (𝐴 ∈ GCH → (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴))) |
| 13 | 12 | orcomd 871 | . . . 4 ⊢ (𝐴 ∈ GCH → (∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) ∨ 𝐴 ∈ Fin)) |
| 14 | 13 | ord 864 | . . 3 ⊢ (𝐴 ∈ GCH → (¬ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)) |
| 15 | 10, 14 | syl5 34 | . 2 ⊢ (𝐴 ∈ GCH → ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)) |
| 16 | 15 | 3impib 1116 | 1 ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 𝒫 cpw 4575 class class class wbr 5119 ≺ csdm 8958 Fincfn 8959 GCHcgch 10634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dom 8961 df-sdom 8962 df-gch 10635 |
| This theorem is referenced by: gchen1 10639 gchen2 10640 gchpwdom 10684 gchaleph 10685 |
| Copyright terms: Public domain | W3C validator |