MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchi Structured version   Visualization version   GIF version

Theorem gchi 10380
Description: The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchi ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)

Proof of Theorem gchi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 relsdom 8740 . . . . . . 7 Rel ≺
21brrelex1i 5643 . . . . . 6 (𝐵 ≺ 𝒫 𝐴𝐵 ∈ V)
32adantl 482 . . . . 5 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐵 ∈ V)
4 breq2 5078 . . . . . . 7 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
5 breq1 5077 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 ≺ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
64, 5anbi12d 631 . . . . . 6 (𝑥 = 𝐵 → ((𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)))
76spcegv 3536 . . . . 5 (𝐵 ∈ V → ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
83, 7mpcom 38 . . . 4 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴))
9 df-ex 1783 . . . 4 (∃𝑥(𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
108, 9sylib 217 . . 3 ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → ¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))
11 elgch 10378 . . . . . 6 (𝐴 ∈ GCH → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1211ibi 266 . . . . 5 (𝐴 ∈ GCH → (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1312orcomd 868 . . . 4 (𝐴 ∈ GCH → (∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ∨ 𝐴 ∈ Fin))
1413ord 861 . . 3 (𝐴 ∈ GCH → (¬ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin))
1510, 14syl5 34 . 2 (𝐴 ∈ GCH → ((𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin))
16153impib 1115 1 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  𝒫 cpw 4533   class class class wbr 5074  csdm 8732  Fincfn 8733  GCHcgch 10376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-dom 8735  df-sdom 8736  df-gch 10377
This theorem is referenced by:  gchen1  10381  gchen2  10382  gchpwdom  10426  gchaleph  10427
  Copyright terms: Public domain W3C validator