MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gch2 Structured version   Visualization version   GIF version

Theorem gch2 10086
Description: It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gch2 (GCH = V ↔ ran ℵ ⊆ GCH)

Proof of Theorem gch2
StepHypRef Expression
1 ssv 3939 . . 3 ran ℵ ⊆ V
2 sseq2 3941 . . 3 (GCH = V → (ran ℵ ⊆ GCH ↔ ran ℵ ⊆ V))
31, 2mpbiri 261 . 2 (GCH = V → ran ℵ ⊆ GCH)
4 cardidm 9372 . . . . . . . 8 (card‘(card‘𝑥)) = (card‘𝑥)
5 iscard3 9504 . . . . . . . 8 ((card‘(card‘𝑥)) = (card‘𝑥) ↔ (card‘𝑥) ∈ (ω ∪ ran ℵ))
64, 5mpbi 233 . . . . . . 7 (card‘𝑥) ∈ (ω ∪ ran ℵ)
7 elun 4076 . . . . . . 7 ((card‘𝑥) ∈ (ω ∪ ran ℵ) ↔ ((card‘𝑥) ∈ ω ∨ (card‘𝑥) ∈ ran ℵ))
86, 7mpbi 233 . . . . . 6 ((card‘𝑥) ∈ ω ∨ (card‘𝑥) ∈ ran ℵ)
9 fingch 10034 . . . . . . . . 9 Fin ⊆ GCH
10 nnfi 8696 . . . . . . . . 9 ((card‘𝑥) ∈ ω → (card‘𝑥) ∈ Fin)
119, 10sseldi 3913 . . . . . . . 8 ((card‘𝑥) ∈ ω → (card‘𝑥) ∈ GCH)
1211a1i 11 . . . . . . 7 (ran ℵ ⊆ GCH → ((card‘𝑥) ∈ ω → (card‘𝑥) ∈ GCH))
13 ssel 3908 . . . . . . 7 (ran ℵ ⊆ GCH → ((card‘𝑥) ∈ ran ℵ → (card‘𝑥) ∈ GCH))
1412, 13jaod 856 . . . . . 6 (ran ℵ ⊆ GCH → (((card‘𝑥) ∈ ω ∨ (card‘𝑥) ∈ ran ℵ) → (card‘𝑥) ∈ GCH))
158, 14mpi 20 . . . . 5 (ran ℵ ⊆ GCH → (card‘𝑥) ∈ GCH)
16 vex 3444 . . . . . . 7 𝑥 ∈ V
17 alephon 9480 . . . . . . . . . . 11 (ℵ‘suc 𝑥) ∈ On
18 simpr 488 . . . . . . . . . . . 12 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → 𝑥 ∈ On)
19 simpl 486 . . . . . . . . . . . . 13 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → ran ℵ ⊆ GCH)
20 alephfnon 9476 . . . . . . . . . . . . . 14 ℵ Fn On
21 fnfvelrn 6825 . . . . . . . . . . . . . 14 ((ℵ Fn On ∧ 𝑥 ∈ On) → (ℵ‘𝑥) ∈ ran ℵ)
2220, 18, 21sylancr 590 . . . . . . . . . . . . 13 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → (ℵ‘𝑥) ∈ ran ℵ)
2319, 22sseldd 3916 . . . . . . . . . . . 12 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → (ℵ‘𝑥) ∈ GCH)
24 suceloni 7508 . . . . . . . . . . . . . . 15 (𝑥 ∈ On → suc 𝑥 ∈ On)
2524adantl 485 . . . . . . . . . . . . . 14 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → suc 𝑥 ∈ On)
26 fnfvelrn 6825 . . . . . . . . . . . . . 14 ((ℵ Fn On ∧ suc 𝑥 ∈ On) → (ℵ‘suc 𝑥) ∈ ran ℵ)
2720, 25, 26sylancr 590 . . . . . . . . . . . . 13 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → (ℵ‘suc 𝑥) ∈ ran ℵ)
2819, 27sseldd 3916 . . . . . . . . . . . 12 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → (ℵ‘suc 𝑥) ∈ GCH)
29 gchaleph2 10083 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ GCH ∧ (ℵ‘suc 𝑥) ∈ GCH) → (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥))
3018, 23, 28, 29syl3anc 1368 . . . . . . . . . . 11 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥))
31 isnumi 9359 . . . . . . . . . . 11 (((ℵ‘suc 𝑥) ∈ On ∧ (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥)) → 𝒫 (ℵ‘𝑥) ∈ dom card)
3217, 30, 31sylancr 590 . . . . . . . . . 10 ((ran ℵ ⊆ GCH ∧ 𝑥 ∈ On) → 𝒫 (ℵ‘𝑥) ∈ dom card)
3332ralrimiva 3149 . . . . . . . . 9 (ran ℵ ⊆ GCH → ∀𝑥 ∈ On 𝒫 (ℵ‘𝑥) ∈ dom card)
34 dfac12 9560 . . . . . . . . 9 (CHOICE ↔ ∀𝑥 ∈ On 𝒫 (ℵ‘𝑥) ∈ dom card)
3533, 34sylibr 237 . . . . . . . 8 (ran ℵ ⊆ GCH → CHOICE)
36 dfac10 9548 . . . . . . . 8 (CHOICE ↔ dom card = V)
3735, 36sylib 221 . . . . . . 7 (ran ℵ ⊆ GCH → dom card = V)
3816, 37eleqtrrid 2897 . . . . . 6 (ran ℵ ⊆ GCH → 𝑥 ∈ dom card)
39 cardid2 9366 . . . . . 6 (𝑥 ∈ dom card → (card‘𝑥) ≈ 𝑥)
40 engch 10039 . . . . . 6 ((card‘𝑥) ≈ 𝑥 → ((card‘𝑥) ∈ GCH ↔ 𝑥 ∈ GCH))
4138, 39, 403syl 18 . . . . 5 (ran ℵ ⊆ GCH → ((card‘𝑥) ∈ GCH ↔ 𝑥 ∈ GCH))
4215, 41mpbid 235 . . . 4 (ran ℵ ⊆ GCH → 𝑥 ∈ GCH)
4316a1i 11 . . . 4 (ran ℵ ⊆ GCH → 𝑥 ∈ V)
4442, 432thd 268 . . 3 (ran ℵ ⊆ GCH → (𝑥 ∈ GCH ↔ 𝑥 ∈ V))
4544eqrdv 2796 . 2 (ran ℵ ⊆ GCH → GCH = V)
463, 45impbii 212 1 (GCH = V ↔ ran ℵ ⊆ GCH)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cun 3879  wss 3881  𝒫 cpw 4497   class class class wbr 5030  dom cdm 5519  ran crn 5520  Oncon0 6159  suc csuc 6161   Fn wfn 6319  cfv 6324  ωcom 7560  cen 8489  Fincfn 8492  cardccrd 9348  cale 9349  CHOICEwac 9526  GCHcgch 10031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-seqom 8067  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-oexp 8091  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-har 9005  df-wdom 9013  df-cnf 9109  df-r1 9177  df-rank 9178  df-dju 9314  df-card 9352  df-aleph 9353  df-ac 9527  df-fin4 9698  df-gch 10032
This theorem is referenced by:  gch3  10087
  Copyright terms: Public domain W3C validator