Step | Hyp | Ref
| Expression |
1 | | fldcrng 36162 |
. . 3
⊢ (𝐾 ∈ Fld → 𝐾 ∈
CRingOps) |
2 | | flddivrng 36157 |
. . . 4
⊢ (𝐾 ∈ Fld → 𝐾 ∈
DivRingOps) |
3 | | isfldidl.1 |
. . . . 5
⊢ 𝐺 = (1st ‘𝐾) |
4 | | isfldidl.2 |
. . . . 5
⊢ 𝐻 = (2nd ‘𝐾) |
5 | | isfldidl.3 |
. . . . 5
⊢ 𝑋 = ran 𝐺 |
6 | | isfldidl.4 |
. . . . 5
⊢ 𝑍 = (GId‘𝐺) |
7 | | isfldidl.5 |
. . . . 5
⊢ 𝑈 = (GId‘𝐻) |
8 | 3, 4, 5, 6, 7 | dvrunz 36112 |
. . . 4
⊢ (𝐾 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
9 | 2, 8 | syl 17 |
. . 3
⊢ (𝐾 ∈ Fld → 𝑈 ≠ 𝑍) |
10 | 3, 4, 5, 6 | divrngidl 36186 |
. . . 4
⊢ (𝐾 ∈ DivRingOps →
(Idl‘𝐾) = {{𝑍}, 𝑋}) |
11 | 2, 10 | syl 17 |
. . 3
⊢ (𝐾 ∈ Fld →
(Idl‘𝐾) = {{𝑍}, 𝑋}) |
12 | 1, 9, 11 | 3jca 1127 |
. 2
⊢ (𝐾 ∈ Fld → (𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |
13 | | crngorngo 36158 |
. . . . . 6
⊢ (𝐾 ∈ CRingOps → 𝐾 ∈
RingOps) |
14 | 13 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ RingOps) |
15 | | simp2 1136 |
. . . . 5
⊢ ((𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝑈 ≠ 𝑍) |
16 | 3 | rneqi 5846 |
. . . . . . . . . . . . . . 15
⊢ ran 𝐺 = ran (1st
‘𝐾) |
17 | 5, 16 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ 𝑋 = ran (1st
‘𝐾) |
18 | 17, 4, 7 | rngo1cl 36097 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ RingOps → 𝑈 ∈ 𝑋) |
19 | 13, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ CRingOps → 𝑈 ∈ 𝑋) |
20 | 19 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ CRingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑈 ∈ 𝑋) |
21 | | eldif 3897 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ {𝑍})) |
22 | | snssi 4741 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ 𝑋 → {𝑥} ⊆ 𝑋) |
23 | 3, 5 | igenss 36220 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ RingOps ∧ {𝑥} ⊆ 𝑋) → {𝑥} ⊆ (𝐾 IdlGen {𝑥})) |
24 | 22, 23 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → {𝑥} ⊆ (𝐾 IdlGen {𝑥})) |
25 | | vex 3436 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑥 ∈ V |
26 | 25 | snss 4719 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝐾 IdlGen {𝑥}) ↔ {𝑥} ⊆ (𝐾 IdlGen {𝑥})) |
27 | 26 | biimpri 227 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑥} ⊆ (𝐾 IdlGen {𝑥}) → 𝑥 ∈ (𝐾 IdlGen {𝑥})) |
28 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 IdlGen {𝑥}) = {𝑍} → (𝑥 ∈ (𝐾 IdlGen {𝑥}) ↔ 𝑥 ∈ {𝑍})) |
29 | 27, 28 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑥} ⊆ (𝐾 IdlGen {𝑥}) → ((𝐾 IdlGen {𝑥}) = {𝑍} → 𝑥 ∈ {𝑍})) |
30 | 29 | con3dimp 409 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝑥} ⊆ (𝐾 IdlGen {𝑥}) ∧ ¬ 𝑥 ∈ {𝑍}) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍}) |
31 | 24, 30 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ RingOps ∧ 𝑥 ∈ 𝑋) ∧ ¬ 𝑥 ∈ {𝑍}) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍}) |
32 | 31 | anasss 467 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ RingOps ∧ (𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍}) |
33 | 21, 32 | sylan2b 594 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍}) |
34 | 33 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ RingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍}) |
35 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (𝑋 ∖ {𝑍}) → 𝑥 ∈ 𝑋) |
36 | 35 | snssd 4742 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ (𝑋 ∖ {𝑍}) → {𝑥} ⊆ 𝑋) |
37 | 3, 5 | igenidl 36221 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ RingOps ∧ {𝑥} ⊆ 𝑋) → (𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾)) |
38 | 36, 37 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾)) |
39 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . . 19
⊢
((Idl‘𝐾) =
{{𝑍}, 𝑋} → ((𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾) ↔ (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋})) |
40 | 38, 39 | syl5ibcom 244 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ((Idl‘𝐾) = {{𝑍}, 𝑋} → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋})) |
41 | 40 | imp 407 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋}) |
42 | 41 | an32s 649 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾 ∈ RingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋}) |
43 | | ovex 7308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 IdlGen {𝑥}) ∈ V |
44 | 43 | elpr 4584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋} ↔ ((𝐾 IdlGen {𝑥}) = {𝑍} ∨ (𝐾 IdlGen {𝑥}) = 𝑋)) |
45 | 42, 44 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ RingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ((𝐾 IdlGen {𝑥}) = {𝑍} ∨ (𝐾 IdlGen {𝑥}) = 𝑋)) |
46 | 45 | ord 861 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ RingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (¬ (𝐾 IdlGen {𝑥}) = {𝑍} → (𝐾 IdlGen {𝑥}) = 𝑋)) |
47 | 34, 46 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ RingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = 𝑋) |
48 | 13, 47 | sylanl1 677 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ CRingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = 𝑋) |
49 | 3, 4, 5 | prnc 36225 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ CRingOps ∧ 𝑥 ∈ 𝑋) → (𝐾 IdlGen {𝑥}) = {𝑧 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑧 = (𝑦𝐻𝑥)}) |
50 | 35, 49 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ CRingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = {𝑧 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑧 = (𝑦𝐻𝑥)}) |
51 | 50 | adantlr 712 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ CRingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = {𝑧 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑧 = (𝑦𝐻𝑥)}) |
52 | 48, 51 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ CRingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑋 = {𝑧 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑧 = (𝑦𝐻𝑥)}) |
53 | 20, 52 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ CRingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑈 ∈ {𝑧 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑧 = (𝑦𝐻𝑥)}) |
54 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑈 → (𝑧 = (𝑦𝐻𝑥) ↔ 𝑈 = (𝑦𝐻𝑥))) |
55 | 54 | rexbidv 3226 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑈 → (∃𝑦 ∈ 𝑋 𝑧 = (𝑦𝐻𝑥) ↔ ∃𝑦 ∈ 𝑋 𝑈 = (𝑦𝐻𝑥))) |
56 | 55 | elrab 3624 |
. . . . . . . . . 10
⊢ (𝑈 ∈ {𝑧 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑧 = (𝑦𝐻𝑥)} ↔ (𝑈 ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 𝑈 = (𝑦𝐻𝑥))) |
57 | 53, 56 | sylib 217 |
. . . . . . . . 9
⊢ (((𝐾 ∈ CRingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝑈 ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 𝑈 = (𝑦𝐻𝑥))) |
58 | 57 | simprd 496 |
. . . . . . . 8
⊢ (((𝐾 ∈ CRingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ 𝑋 𝑈 = (𝑦𝐻𝑥)) |
59 | | eqcom 2745 |
. . . . . . . . 9
⊢ ((𝑦𝐻𝑥) = 𝑈 ↔ 𝑈 = (𝑦𝐻𝑥)) |
60 | 59 | rexbii 3181 |
. . . . . . . 8
⊢
(∃𝑦 ∈
𝑋 (𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦 ∈ 𝑋 𝑈 = (𝑦𝐻𝑥)) |
61 | 58, 60 | sylibr 233 |
. . . . . . 7
⊢ (((𝐾 ∈ CRingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈) |
62 | 61 | ralrimiva 3103 |
. . . . . 6
⊢ ((𝐾 ∈ CRingOps ∧
(Idl‘𝐾) = {{𝑍}, 𝑋}) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈) |
63 | 62 | 3adant2 1130 |
. . . . 5
⊢ ((𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈) |
64 | 14, 15, 63 | jca32 516 |
. . . 4
⊢ ((𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → (𝐾 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈))) |
65 | 3, 4, 6, 5, 7 | isdrngo3 36117 |
. . . 4
⊢ (𝐾 ∈ DivRingOps ↔ (𝐾 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ 𝑋 (𝑦𝐻𝑥) = 𝑈))) |
66 | 64, 65 | sylibr 233 |
. . 3
⊢ ((𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ DivRingOps) |
67 | | simp1 1135 |
. . 3
⊢ ((𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ CRingOps) |
68 | | isfld2 36163 |
. . 3
⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈
CRingOps)) |
69 | 66, 67, 68 | sylanbrc 583 |
. 2
⊢ ((𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ Fld) |
70 | 12, 69 | impbii 208 |
1
⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) |