Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfldidl Structured version   Visualization version   GIF version

Theorem isfldidl 36936
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isfldidl.1 𝐺 = (1st𝐾)
isfldidl.2 𝐻 = (2nd𝐾)
isfldidl.3 𝑋 = ran 𝐺
isfldidl.4 𝑍 = (GId‘𝐺)
isfldidl.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isfldidl (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))

Proof of Theorem isfldidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldcrngo 36872 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
2 flddivrng 36867 . . . 4 (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)
3 isfldidl.1 . . . . 5 𝐺 = (1st𝐾)
4 isfldidl.2 . . . . 5 𝐻 = (2nd𝐾)
5 isfldidl.3 . . . . 5 𝑋 = ran 𝐺
6 isfldidl.4 . . . . 5 𝑍 = (GId‘𝐺)
7 isfldidl.5 . . . . 5 𝑈 = (GId‘𝐻)
83, 4, 5, 6, 7dvrunz 36822 . . . 4 (𝐾 ∈ DivRingOps → 𝑈𝑍)
92, 8syl 17 . . 3 (𝐾 ∈ Fld → 𝑈𝑍)
103, 4, 5, 6divrngidl 36896 . . . 4 (𝐾 ∈ DivRingOps → (Idl‘𝐾) = {{𝑍}, 𝑋})
112, 10syl 17 . . 3 (𝐾 ∈ Fld → (Idl‘𝐾) = {{𝑍}, 𝑋})
121, 9, 113jca 1129 . 2 (𝐾 ∈ Fld → (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
13 crngorngo 36868 . . . . . 6 (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps)
14133ad2ant1 1134 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ RingOps)
15 simp2 1138 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝑈𝑍)
163rneqi 5937 . . . . . . . . . . . . . . 15 ran 𝐺 = ran (1st𝐾)
175, 16eqtri 2761 . . . . . . . . . . . . . 14 𝑋 = ran (1st𝐾)
1817, 4, 7rngo1cl 36807 . . . . . . . . . . . . 13 (𝐾 ∈ RingOps → 𝑈𝑋)
1913, 18syl 17 . . . . . . . . . . . 12 (𝐾 ∈ CRingOps → 𝑈𝑋)
2019ad2antrr 725 . . . . . . . . . . 11 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑈𝑋)
21 eldif 3959 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ {𝑍}))
22 snssi 4812 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑋 → {𝑥} ⊆ 𝑋)
233, 5igenss 36930 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ RingOps ∧ {𝑥} ⊆ 𝑋) → {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
2422, 23sylan2 594 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ RingOps ∧ 𝑥𝑋) → {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
25 vex 3479 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 ∈ V
2625snss 4790 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐾 IdlGen {𝑥}) ↔ {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
2726biimpri 227 . . . . . . . . . . . . . . . . . . . 20 ({𝑥} ⊆ (𝐾 IdlGen {𝑥}) → 𝑥 ∈ (𝐾 IdlGen {𝑥}))
28 eleq2 2823 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 IdlGen {𝑥}) = {𝑍} → (𝑥 ∈ (𝐾 IdlGen {𝑥}) ↔ 𝑥 ∈ {𝑍}))
2927, 28syl5ibcom 244 . . . . . . . . . . . . . . . . . . 19 ({𝑥} ⊆ (𝐾 IdlGen {𝑥}) → ((𝐾 IdlGen {𝑥}) = {𝑍} → 𝑥 ∈ {𝑍}))
3029con3dimp 410 . . . . . . . . . . . . . . . . . 18 (({𝑥} ⊆ (𝐾 IdlGen {𝑥}) ∧ ¬ 𝑥 ∈ {𝑍}) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3124, 30sylan 581 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ RingOps ∧ 𝑥𝑋) ∧ ¬ 𝑥 ∈ {𝑍}) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3231anasss 468 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ RingOps ∧ (𝑥𝑋 ∧ ¬ 𝑥 ∈ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3321, 32sylan2b 595 . . . . . . . . . . . . . . 15 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3433adantlr 714 . . . . . . . . . . . . . 14 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
35 eldifi 4127 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝑋 ∖ {𝑍}) → 𝑥𝑋)
3635snssd 4813 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑋 ∖ {𝑍}) → {𝑥} ⊆ 𝑋)
373, 5igenidl 36931 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ RingOps ∧ {𝑥} ⊆ 𝑋) → (𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾))
3836, 37sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾))
39 eleq2 2823 . . . . . . . . . . . . . . . . . . 19 ((Idl‘𝐾) = {{𝑍}, 𝑋} → ((𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾) ↔ (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋}))
4038, 39syl5ibcom 244 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ((Idl‘𝐾) = {{𝑍}, 𝑋} → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋}))
4140imp 408 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋})
4241an32s 651 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋})
43 ovex 7442 . . . . . . . . . . . . . . . . 17 (𝐾 IdlGen {𝑥}) ∈ V
4443elpr 4652 . . . . . . . . . . . . . . . 16 ((𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋} ↔ ((𝐾 IdlGen {𝑥}) = {𝑍} ∨ (𝐾 IdlGen {𝑥}) = 𝑋))
4542, 44sylib 217 . . . . . . . . . . . . . . 15 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ((𝐾 IdlGen {𝑥}) = {𝑍} ∨ (𝐾 IdlGen {𝑥}) = 𝑋))
4645ord 863 . . . . . . . . . . . . . 14 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (¬ (𝐾 IdlGen {𝑥}) = {𝑍} → (𝐾 IdlGen {𝑥}) = 𝑋))
4734, 46mpd 15 . . . . . . . . . . . . 13 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = 𝑋)
4813, 47sylanl1 679 . . . . . . . . . . . 12 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = 𝑋)
493, 4, 5prnc 36935 . . . . . . . . . . . . . 14 ((𝐾 ∈ CRingOps ∧ 𝑥𝑋) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5035, 49sylan2 594 . . . . . . . . . . . . 13 ((𝐾 ∈ CRingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5150adantlr 714 . . . . . . . . . . . 12 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5248, 51eqtr3d 2775 . . . . . . . . . . 11 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑋 = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5320, 52eleqtrd 2836 . . . . . . . . . 10 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑈 ∈ {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
54 eqeq1 2737 . . . . . . . . . . . 12 (𝑧 = 𝑈 → (𝑧 = (𝑦𝐻𝑥) ↔ 𝑈 = (𝑦𝐻𝑥)))
5554rexbidv 3179 . . . . . . . . . . 11 (𝑧 = 𝑈 → (∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥) ↔ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5655elrab 3684 . . . . . . . . . 10 (𝑈 ∈ {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)} ↔ (𝑈𝑋 ∧ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5753, 56sylib 217 . . . . . . . . 9 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝑋 ∧ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5857simprd 497 . . . . . . . 8 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥))
59 eqcom 2740 . . . . . . . . 9 ((𝑦𝐻𝑥) = 𝑈𝑈 = (𝑦𝐻𝑥))
6059rexbii 3095 . . . . . . . 8 (∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥))
6158, 60sylibr 233 . . . . . . 7 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
6261ralrimiva 3147 . . . . . 6 ((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
63623adant2 1132 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
6414, 15, 63jca32 517 . . . 4 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → (𝐾 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
653, 4, 6, 5, 7isdrngo3 36827 . . . 4 (𝐾 ∈ DivRingOps ↔ (𝐾 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
6664, 65sylibr 233 . . 3 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ DivRingOps)
67 simp1 1137 . . 3 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ CRingOps)
68 isfld2 36873 . . 3 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
6966, 67, 68sylanbrc 584 . 2 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ Fld)
7012, 69impbii 208 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  {crab 3433  cdif 3946  wss 3949  {csn 4629  {cpr 4631  ran crn 5678  cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  GIdcgi 29743  RingOpscrngo 36762  DivRingOpscdrng 36816  Fldcfld 36859  CRingOpsccring 36861  Idlcidl 36875   IdlGen cigen 36927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-1o 8466  df-en 8940  df-grpo 29746  df-gid 29747  df-ginv 29748  df-ablo 29798  df-ass 36711  df-exid 36713  df-mgmOLD 36717  df-sgrOLD 36729  df-mndo 36735  df-rngo 36763  df-drngo 36817  df-com2 36858  df-fld 36860  df-crngo 36862  df-idl 36878  df-igen 36928
This theorem is referenced by:  isfldidl2  36937
  Copyright terms: Public domain W3C validator