Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfldidl Structured version   Visualization version   GIF version

Theorem isfldidl 38069
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isfldidl.1 𝐺 = (1st𝐾)
isfldidl.2 𝐻 = (2nd𝐾)
isfldidl.3 𝑋 = ran 𝐺
isfldidl.4 𝑍 = (GId‘𝐺)
isfldidl.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isfldidl (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))

Proof of Theorem isfldidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldcrngo 38005 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
2 flddivrng 38000 . . . 4 (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)
3 isfldidl.1 . . . . 5 𝐺 = (1st𝐾)
4 isfldidl.2 . . . . 5 𝐻 = (2nd𝐾)
5 isfldidl.3 . . . . 5 𝑋 = ran 𝐺
6 isfldidl.4 . . . . 5 𝑍 = (GId‘𝐺)
7 isfldidl.5 . . . . 5 𝑈 = (GId‘𝐻)
83, 4, 5, 6, 7dvrunz 37955 . . . 4 (𝐾 ∈ DivRingOps → 𝑈𝑍)
92, 8syl 17 . . 3 (𝐾 ∈ Fld → 𝑈𝑍)
103, 4, 5, 6divrngidl 38029 . . . 4 (𝐾 ∈ DivRingOps → (Idl‘𝐾) = {{𝑍}, 𝑋})
112, 10syl 17 . . 3 (𝐾 ∈ Fld → (Idl‘𝐾) = {{𝑍}, 𝑋})
121, 9, 113jca 1128 . 2 (𝐾 ∈ Fld → (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
13 crngorngo 38001 . . . . . 6 (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps)
14133ad2ant1 1133 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ RingOps)
15 simp2 1137 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝑈𝑍)
163rneqi 5904 . . . . . . . . . . . . . . 15 ran 𝐺 = ran (1st𝐾)
175, 16eqtri 2753 . . . . . . . . . . . . . 14 𝑋 = ran (1st𝐾)
1817, 4, 7rngo1cl 37940 . . . . . . . . . . . . 13 (𝐾 ∈ RingOps → 𝑈𝑋)
1913, 18syl 17 . . . . . . . . . . . 12 (𝐾 ∈ CRingOps → 𝑈𝑋)
2019ad2antrr 726 . . . . . . . . . . 11 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑈𝑋)
21 eldif 3927 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ {𝑍}))
22 snssi 4775 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑋 → {𝑥} ⊆ 𝑋)
233, 5igenss 38063 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ RingOps ∧ {𝑥} ⊆ 𝑋) → {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
2422, 23sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ RingOps ∧ 𝑥𝑋) → {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
25 vex 3454 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 ∈ V
2625snss 4752 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐾 IdlGen {𝑥}) ↔ {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
2726biimpri 228 . . . . . . . . . . . . . . . . . . . 20 ({𝑥} ⊆ (𝐾 IdlGen {𝑥}) → 𝑥 ∈ (𝐾 IdlGen {𝑥}))
28 eleq2 2818 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 IdlGen {𝑥}) = {𝑍} → (𝑥 ∈ (𝐾 IdlGen {𝑥}) ↔ 𝑥 ∈ {𝑍}))
2927, 28syl5ibcom 245 . . . . . . . . . . . . . . . . . . 19 ({𝑥} ⊆ (𝐾 IdlGen {𝑥}) → ((𝐾 IdlGen {𝑥}) = {𝑍} → 𝑥 ∈ {𝑍}))
3029con3dimp 408 . . . . . . . . . . . . . . . . . 18 (({𝑥} ⊆ (𝐾 IdlGen {𝑥}) ∧ ¬ 𝑥 ∈ {𝑍}) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3124, 30sylan 580 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ RingOps ∧ 𝑥𝑋) ∧ ¬ 𝑥 ∈ {𝑍}) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3231anasss 466 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ RingOps ∧ (𝑥𝑋 ∧ ¬ 𝑥 ∈ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3321, 32sylan2b 594 . . . . . . . . . . . . . . 15 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3433adantlr 715 . . . . . . . . . . . . . 14 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
35 eldifi 4097 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝑋 ∖ {𝑍}) → 𝑥𝑋)
3635snssd 4776 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑋 ∖ {𝑍}) → {𝑥} ⊆ 𝑋)
373, 5igenidl 38064 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ RingOps ∧ {𝑥} ⊆ 𝑋) → (𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾))
3836, 37sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾))
39 eleq2 2818 . . . . . . . . . . . . . . . . . . 19 ((Idl‘𝐾) = {{𝑍}, 𝑋} → ((𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾) ↔ (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋}))
4038, 39syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ((Idl‘𝐾) = {{𝑍}, 𝑋} → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋}))
4140imp 406 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋})
4241an32s 652 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋})
43 ovex 7423 . . . . . . . . . . . . . . . . 17 (𝐾 IdlGen {𝑥}) ∈ V
4443elpr 4617 . . . . . . . . . . . . . . . 16 ((𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋} ↔ ((𝐾 IdlGen {𝑥}) = {𝑍} ∨ (𝐾 IdlGen {𝑥}) = 𝑋))
4542, 44sylib 218 . . . . . . . . . . . . . . 15 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ((𝐾 IdlGen {𝑥}) = {𝑍} ∨ (𝐾 IdlGen {𝑥}) = 𝑋))
4645ord 864 . . . . . . . . . . . . . 14 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (¬ (𝐾 IdlGen {𝑥}) = {𝑍} → (𝐾 IdlGen {𝑥}) = 𝑋))
4734, 46mpd 15 . . . . . . . . . . . . 13 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = 𝑋)
4813, 47sylanl1 680 . . . . . . . . . . . 12 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = 𝑋)
493, 4, 5prnc 38068 . . . . . . . . . . . . . 14 ((𝐾 ∈ CRingOps ∧ 𝑥𝑋) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5035, 49sylan2 593 . . . . . . . . . . . . 13 ((𝐾 ∈ CRingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5150adantlr 715 . . . . . . . . . . . 12 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5248, 51eqtr3d 2767 . . . . . . . . . . 11 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑋 = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5320, 52eleqtrd 2831 . . . . . . . . . 10 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑈 ∈ {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
54 eqeq1 2734 . . . . . . . . . . . 12 (𝑧 = 𝑈 → (𝑧 = (𝑦𝐻𝑥) ↔ 𝑈 = (𝑦𝐻𝑥)))
5554rexbidv 3158 . . . . . . . . . . 11 (𝑧 = 𝑈 → (∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥) ↔ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5655elrab 3662 . . . . . . . . . 10 (𝑈 ∈ {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)} ↔ (𝑈𝑋 ∧ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5753, 56sylib 218 . . . . . . . . 9 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝑋 ∧ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5857simprd 495 . . . . . . . 8 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥))
59 eqcom 2737 . . . . . . . . 9 ((𝑦𝐻𝑥) = 𝑈𝑈 = (𝑦𝐻𝑥))
6059rexbii 3077 . . . . . . . 8 (∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥))
6158, 60sylibr 234 . . . . . . 7 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
6261ralrimiva 3126 . . . . . 6 ((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
63623adant2 1131 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
6414, 15, 63jca32 515 . . . 4 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → (𝐾 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
653, 4, 6, 5, 7isdrngo3 37960 . . . 4 (𝐾 ∈ DivRingOps ↔ (𝐾 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
6664, 65sylibr 234 . . 3 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ DivRingOps)
67 simp1 1136 . . 3 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ CRingOps)
68 isfld2 38006 . . 3 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
6966, 67, 68sylanbrc 583 . 2 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ Fld)
7012, 69impbii 209 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cdif 3914  wss 3917  {csn 4592  {cpr 4594  ran crn 5642  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  GIdcgi 30426  RingOpscrngo 37895  DivRingOpscdrng 37949  Fldcfld 37992  CRingOpsccring 37994  Idlcidl 38008   IdlGen cigen 38060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-en 8922  df-grpo 30429  df-gid 30430  df-ginv 30431  df-ablo 30481  df-ass 37844  df-exid 37846  df-mgmOLD 37850  df-sgrOLD 37862  df-mndo 37868  df-rngo 37896  df-drngo 37950  df-com2 37991  df-fld 37993  df-crngo 37995  df-idl 38011  df-igen 38061
This theorem is referenced by:  isfldidl2  38070
  Copyright terms: Public domain W3C validator