Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfldidl Structured version   Visualization version   GIF version

Theorem isfldidl 36527
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isfldidl.1 𝐺 = (1st𝐾)
isfldidl.2 𝐻 = (2nd𝐾)
isfldidl.3 𝑋 = ran 𝐺
isfldidl.4 𝑍 = (GId‘𝐺)
isfldidl.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
isfldidl (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))

Proof of Theorem isfldidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldcrngo 36463 . . 3 (𝐾 ∈ Fld → 𝐾 ∈ CRingOps)
2 flddivrng 36458 . . . 4 (𝐾 ∈ Fld → 𝐾 ∈ DivRingOps)
3 isfldidl.1 . . . . 5 𝐺 = (1st𝐾)
4 isfldidl.2 . . . . 5 𝐻 = (2nd𝐾)
5 isfldidl.3 . . . . 5 𝑋 = ran 𝐺
6 isfldidl.4 . . . . 5 𝑍 = (GId‘𝐺)
7 isfldidl.5 . . . . 5 𝑈 = (GId‘𝐻)
83, 4, 5, 6, 7dvrunz 36413 . . . 4 (𝐾 ∈ DivRingOps → 𝑈𝑍)
92, 8syl 17 . . 3 (𝐾 ∈ Fld → 𝑈𝑍)
103, 4, 5, 6divrngidl 36487 . . . 4 (𝐾 ∈ DivRingOps → (Idl‘𝐾) = {{𝑍}, 𝑋})
112, 10syl 17 . . 3 (𝐾 ∈ Fld → (Idl‘𝐾) = {{𝑍}, 𝑋})
121, 9, 113jca 1128 . 2 (𝐾 ∈ Fld → (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
13 crngorngo 36459 . . . . . 6 (𝐾 ∈ CRingOps → 𝐾 ∈ RingOps)
14133ad2ant1 1133 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ RingOps)
15 simp2 1137 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝑈𝑍)
163rneqi 5892 . . . . . . . . . . . . . . 15 ran 𝐺 = ran (1st𝐾)
175, 16eqtri 2764 . . . . . . . . . . . . . 14 𝑋 = ran (1st𝐾)
1817, 4, 7rngo1cl 36398 . . . . . . . . . . . . 13 (𝐾 ∈ RingOps → 𝑈𝑋)
1913, 18syl 17 . . . . . . . . . . . 12 (𝐾 ∈ CRingOps → 𝑈𝑋)
2019ad2antrr 724 . . . . . . . . . . 11 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑈𝑋)
21 eldif 3920 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ {𝑍}))
22 snssi 4768 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑋 → {𝑥} ⊆ 𝑋)
233, 5igenss 36521 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ RingOps ∧ {𝑥} ⊆ 𝑋) → {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
2422, 23sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ RingOps ∧ 𝑥𝑋) → {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
25 vex 3449 . . . . . . . . . . . . . . . . . . . . . 22 𝑥 ∈ V
2625snss 4746 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝐾 IdlGen {𝑥}) ↔ {𝑥} ⊆ (𝐾 IdlGen {𝑥}))
2726biimpri 227 . . . . . . . . . . . . . . . . . . . 20 ({𝑥} ⊆ (𝐾 IdlGen {𝑥}) → 𝑥 ∈ (𝐾 IdlGen {𝑥}))
28 eleq2 2826 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 IdlGen {𝑥}) = {𝑍} → (𝑥 ∈ (𝐾 IdlGen {𝑥}) ↔ 𝑥 ∈ {𝑍}))
2927, 28syl5ibcom 244 . . . . . . . . . . . . . . . . . . 19 ({𝑥} ⊆ (𝐾 IdlGen {𝑥}) → ((𝐾 IdlGen {𝑥}) = {𝑍} → 𝑥 ∈ {𝑍}))
3029con3dimp 409 . . . . . . . . . . . . . . . . . 18 (({𝑥} ⊆ (𝐾 IdlGen {𝑥}) ∧ ¬ 𝑥 ∈ {𝑍}) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3124, 30sylan 580 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ RingOps ∧ 𝑥𝑋) ∧ ¬ 𝑥 ∈ {𝑍}) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3231anasss 467 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ RingOps ∧ (𝑥𝑋 ∧ ¬ 𝑥 ∈ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3321, 32sylan2b 594 . . . . . . . . . . . . . . 15 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
3433adantlr 713 . . . . . . . . . . . . . 14 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ¬ (𝐾 IdlGen {𝑥}) = {𝑍})
35 eldifi 4086 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝑋 ∖ {𝑍}) → 𝑥𝑋)
3635snssd 4769 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑋 ∖ {𝑍}) → {𝑥} ⊆ 𝑋)
373, 5igenidl 36522 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ RingOps ∧ {𝑥} ⊆ 𝑋) → (𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾))
3836, 37sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾))
39 eleq2 2826 . . . . . . . . . . . . . . . . . . 19 ((Idl‘𝐾) = {{𝑍}, 𝑋} → ((𝐾 IdlGen {𝑥}) ∈ (Idl‘𝐾) ↔ (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋}))
4038, 39syl5ibcom 244 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ((Idl‘𝐾) = {{𝑍}, 𝑋} → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋}))
4140imp 407 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ RingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋})
4241an32s 650 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋})
43 ovex 7390 . . . . . . . . . . . . . . . . 17 (𝐾 IdlGen {𝑥}) ∈ V
4443elpr 4609 . . . . . . . . . . . . . . . 16 ((𝐾 IdlGen {𝑥}) ∈ {{𝑍}, 𝑋} ↔ ((𝐾 IdlGen {𝑥}) = {𝑍} ∨ (𝐾 IdlGen {𝑥}) = 𝑋))
4542, 44sylib 217 . . . . . . . . . . . . . . 15 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ((𝐾 IdlGen {𝑥}) = {𝑍} ∨ (𝐾 IdlGen {𝑥}) = 𝑋))
4645ord 862 . . . . . . . . . . . . . 14 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (¬ (𝐾 IdlGen {𝑥}) = {𝑍} → (𝐾 IdlGen {𝑥}) = 𝑋))
4734, 46mpd 15 . . . . . . . . . . . . 13 (((𝐾 ∈ RingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = 𝑋)
4813, 47sylanl1 678 . . . . . . . . . . . 12 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = 𝑋)
493, 4, 5prnc 36526 . . . . . . . . . . . . . 14 ((𝐾 ∈ CRingOps ∧ 𝑥𝑋) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5035, 49sylan2 593 . . . . . . . . . . . . 13 ((𝐾 ∈ CRingOps ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5150adantlr 713 . . . . . . . . . . . 12 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝐾 IdlGen {𝑥}) = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5248, 51eqtr3d 2778 . . . . . . . . . . 11 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑋 = {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
5320, 52eleqtrd 2840 . . . . . . . . . 10 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑈 ∈ {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)})
54 eqeq1 2740 . . . . . . . . . . . 12 (𝑧 = 𝑈 → (𝑧 = (𝑦𝐻𝑥) ↔ 𝑈 = (𝑦𝐻𝑥)))
5554rexbidv 3175 . . . . . . . . . . 11 (𝑧 = 𝑈 → (∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥) ↔ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5655elrab 3645 . . . . . . . . . 10 (𝑈 ∈ {𝑧𝑋 ∣ ∃𝑦𝑋 𝑧 = (𝑦𝐻𝑥)} ↔ (𝑈𝑋 ∧ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5753, 56sylib 217 . . . . . . . . 9 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝑋 ∧ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥)))
5857simprd 496 . . . . . . . 8 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥))
59 eqcom 2743 . . . . . . . . 9 ((𝑦𝐻𝑥) = 𝑈𝑈 = (𝑦𝐻𝑥))
6059rexbii 3097 . . . . . . . 8 (∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦𝑋 𝑈 = (𝑦𝐻𝑥))
6158, 60sylibr 233 . . . . . . 7 (((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
6261ralrimiva 3143 . . . . . 6 ((𝐾 ∈ CRingOps ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
63623adant2 1131 . . . . 5 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)
6414, 15, 63jca32 516 . . . 4 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → (𝐾 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
653, 4, 6, 5, 7isdrngo3 36418 . . . 4 (𝐾 ∈ DivRingOps ↔ (𝐾 ∈ RingOps ∧ (𝑈𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦𝑋 (𝑦𝐻𝑥) = 𝑈)))
6664, 65sylibr 233 . . 3 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ DivRingOps)
67 simp1 1136 . . 3 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ CRingOps)
68 isfld2 36464 . . 3 (𝐾 ∈ Fld ↔ (𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps))
6966, 67, 68sylanbrc 583 . 2 ((𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}) → 𝐾 ∈ Fld)
7012, 69impbii 208 1 (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  cdif 3907  wss 3910  {csn 4586  {cpr 4588  ran crn 5634  cfv 6496  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  GIdcgi 29432  RingOpscrngo 36353  DivRingOpscdrng 36407  Fldcfld 36450  CRingOpsccring 36452  Idlcidl 36466   IdlGen cigen 36518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-1o 8412  df-en 8884  df-grpo 29435  df-gid 29436  df-ginv 29437  df-ablo 29487  df-ass 36302  df-exid 36304  df-mgmOLD 36308  df-sgrOLD 36320  df-mndo 36326  df-rngo 36354  df-drngo 36408  df-com2 36449  df-fld 36451  df-crngo 36453  df-idl 36469  df-igen 36519
This theorem is referenced by:  isfldidl2  36528
  Copyright terms: Public domain W3C validator