Step | Hyp | Ref
| Expression |
1 | | iscringd.1 |
. . 3
⊢ (𝜑 → 𝐺 ∈ AbelOp) |
2 | | iscringd.2 |
. . 3
⊢ (𝜑 → 𝑋 = ran 𝐺) |
3 | | iscringd.3 |
. . 3
⊢ (𝜑 → 𝐻:(𝑋 × 𝑋)⟶𝑋) |
4 | | iscringd.4 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))) |
5 | | iscringd.5 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧))) |
6 | | id 22 |
. . . . 5
⊢ ((𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) |
7 | 6 | 3com13 1123 |
. . . 4
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) |
8 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑋 ↔ 𝑧 ∈ 𝑋)) |
9 | 8 | 3anbi1d 1439 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → ((𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ↔ (𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋))) |
10 | 9 | anbi2d 629 |
. . . . . 6
⊢ (𝑤 = 𝑧 → ((𝜑 ∧ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) ↔ (𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)))) |
11 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → ((𝑥𝐺𝑦)𝐻𝑤) = ((𝑥𝐺𝑦)𝐻𝑧)) |
12 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (𝑥𝐻𝑤) = (𝑥𝐻𝑧)) |
13 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (𝑦𝐻𝑤) = (𝑦𝐻𝑧)) |
14 | 12, 13 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → ((𝑥𝐻𝑤)𝐺(𝑦𝐻𝑤)) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) |
15 | 11, 14 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑤 = 𝑧 → (((𝑥𝐺𝑦)𝐻𝑤) = ((𝑥𝐻𝑤)𝐺(𝑦𝐻𝑤)) ↔ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))) |
16 | 10, 15 | imbi12d 345 |
. . . . 5
⊢ (𝑤 = 𝑧 → (((𝜑 ∧ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐻𝑤) = ((𝑥𝐻𝑤)𝐺(𝑦𝐻𝑤))) ↔ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))))) |
17 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑋 ↔ 𝑥 ∈ 𝑋)) |
18 | 17 | 3anbi3d 1441 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ↔ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋))) |
19 | 18 | anbi2d 629 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → ((𝜑 ∧ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ↔ (𝜑 ∧ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)))) |
20 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧𝐺𝑦) = (𝑥𝐺𝑦)) |
21 | 20 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑧𝐺𝑦)𝐻𝑤) = ((𝑥𝐺𝑦)𝐻𝑤)) |
22 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧𝐻𝑤) = (𝑥𝐻𝑤)) |
23 | 22 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑧𝐻𝑤)𝐺(𝑦𝐻𝑤)) = ((𝑥𝐻𝑤)𝐺(𝑦𝐻𝑤))) |
24 | 21, 23 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (((𝑧𝐺𝑦)𝐻𝑤) = ((𝑧𝐻𝑤)𝐺(𝑦𝐻𝑤)) ↔ ((𝑥𝐺𝑦)𝐻𝑤) = ((𝑥𝐻𝑤)𝐺(𝑦𝐻𝑤)))) |
25 | 19, 24 | imbi12d 345 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (((𝜑 ∧ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐺𝑦)𝐻𝑤) = ((𝑧𝐻𝑤)𝐺(𝑦𝐻𝑤))) ↔ ((𝜑 ∧ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐻𝑤) = ((𝑥𝐻𝑤)𝐺(𝑦𝐻𝑤))))) |
26 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝑋 ↔ 𝑤 ∈ 𝑋)) |
27 | 26 | 3anbi1d 1439 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ↔ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋))) |
28 | 27 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ↔ (𝜑 ∧ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)))) |
29 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝑧𝐺𝑦)𝐻𝑥) = ((𝑧𝐺𝑦)𝐻𝑤)) |
30 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (𝑧𝐻𝑥) = (𝑧𝐻𝑤)) |
31 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (𝑦𝐻𝑥) = (𝑦𝐻𝑤)) |
32 | 30, 31 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝑧𝐻𝑥)𝐺(𝑦𝐻𝑥)) = ((𝑧𝐻𝑤)𝐺(𝑦𝐻𝑤))) |
33 | 29, 32 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (((𝑧𝐺𝑦)𝐻𝑥) = ((𝑧𝐻𝑥)𝐺(𝑦𝐻𝑥)) ↔ ((𝑧𝐺𝑦)𝐻𝑤) = ((𝑧𝐻𝑤)𝐺(𝑦𝐻𝑤)))) |
34 | 28, 33 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐺𝑦)𝐻𝑥) = ((𝑧𝐻𝑥)𝐺(𝑦𝐻𝑥))) ↔ ((𝜑 ∧ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐺𝑦)𝐻𝑤) = ((𝑧𝐻𝑤)𝐺(𝑦𝐻𝑤))))) |
35 | 1 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐺 ∈ AbelOp) |
36 | | simpr3 1195 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
37 | 2 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑋 = ran 𝐺) |
38 | 36, 37 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ ran 𝐺) |
39 | | simpr2 1194 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
40 | 39, 37 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ ran 𝐺) |
41 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ran 𝐺 = ran 𝐺 |
42 | 41 | ablocom 28910 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ AbelOp ∧ 𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺) → (𝑧𝐺𝑦) = (𝑦𝐺𝑧)) |
43 | 35, 38, 40, 42 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐺𝑦) = (𝑦𝐺𝑧)) |
44 | 43 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐺𝑦)𝐻𝑥) = ((𝑦𝐺𝑧)𝐻𝑥)) |
45 | | simpr1 1193 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
46 | | ablogrpo 28909 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) |
47 | 35, 46 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐺 ∈ GrpOp) |
48 | 41 | grpocl 28862 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ ran 𝐺 ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐺𝑧) ∈ ran 𝐺) |
49 | 47, 40, 38, 48 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝐺𝑧) ∈ ran 𝐺) |
50 | 49, 37 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝐺𝑧) ∈ 𝑋) |
51 | 45, 50 | jca 512 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 ∈ 𝑋 ∧ (𝑦𝐺𝑧) ∈ 𝑋)) |
52 | | ovex 7308 |
. . . . . . . . . 10
⊢ (𝑦𝐺𝑧) ∈ V |
53 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑦𝐺𝑧) → (𝑤 ∈ 𝑋 ↔ (𝑦𝐺𝑧) ∈ 𝑋)) |
54 | 53 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑦𝐺𝑧) → ((𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) ↔ (𝑥 ∈ 𝑋 ∧ (𝑦𝐺𝑧) ∈ 𝑋))) |
55 | 54 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑦𝐺𝑧) → ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑦𝐺𝑧) ∈ 𝑋)))) |
56 | | oveq2 7283 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑦𝐺𝑧) → (𝑥𝐻𝑤) = (𝑥𝐻(𝑦𝐺𝑧))) |
57 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑦𝐺𝑧) → (𝑤𝐻𝑥) = ((𝑦𝐺𝑧)𝐻𝑥)) |
58 | 56, 57 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑦𝐺𝑧) → ((𝑥𝐻𝑤) = (𝑤𝐻𝑥) ↔ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑦𝐺𝑧)𝐻𝑥))) |
59 | 55, 58 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑦𝐺𝑧) → (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑥𝐻𝑤) = (𝑤𝐻𝑥)) ↔ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑦𝐺𝑧) ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑦𝐺𝑧)𝐻𝑥)))) |
60 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝑋 ↔ 𝑤 ∈ 𝑋)) |
61 | 60 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ (𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋))) |
62 | 61 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)))) |
63 | | oveq2 7283 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑥𝐻𝑦) = (𝑥𝐻𝑤)) |
64 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑦𝐻𝑥) = (𝑤𝐻𝑥)) |
65 | 63, 64 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝑥𝐻𝑤) = (𝑤𝐻𝑥))) |
66 | 62, 65 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) ↔ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑥𝐻𝑤) = (𝑤𝐻𝑥)))) |
67 | | iscringd.8 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) |
68 | 66, 67 | chvarvv 2002 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → (𝑥𝐻𝑤) = (𝑤𝐻𝑥)) |
69 | 52, 59, 68 | vtocl 3498 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ (𝑦𝐺𝑧) ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑦𝐺𝑧)𝐻𝑥)) |
70 | 51, 69 | syldan 591 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑦𝐺𝑧)𝐻𝑥)) |
71 | 67 | 3adantr3 1170 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) |
72 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑋 ↔ 𝑧 ∈ 𝑋)) |
73 | 72 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋))) |
74 | 73 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)))) |
75 | | oveq2 7283 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝑥𝐻𝑦) = (𝑥𝐻𝑧)) |
76 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝑦𝐻𝑥) = (𝑧𝐻𝑥)) |
77 | 75, 76 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝑥𝐻𝑧) = (𝑧𝐻𝑥))) |
78 | 74, 77 | imbi12d 345 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) ↔ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻𝑧) = (𝑧𝐻𝑥)))) |
79 | 78, 67 | chvarvv 2002 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻𝑧) = (𝑧𝐻𝑥)) |
80 | 79 | 3adantr2 1169 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻𝑧) = (𝑧𝐻𝑥)) |
81 | 71, 80 | oveq12d 7293 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) = ((𝑦𝐻𝑥)𝐺(𝑧𝐻𝑥))) |
82 | 3 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐻:(𝑋 × 𝑋)⟶𝑋) |
83 | 82, 39, 45 | fovrnd 7444 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝐻𝑥) ∈ 𝑋) |
84 | 83, 37 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝐻𝑥) ∈ ran 𝐺) |
85 | 82, 36, 45 | fovrnd 7444 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐻𝑥) ∈ 𝑋) |
86 | 85, 37 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐻𝑥) ∈ ran 𝐺) |
87 | 41 | ablocom 28910 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ AbelOp ∧ (𝑦𝐻𝑥) ∈ ran 𝐺 ∧ (𝑧𝐻𝑥) ∈ ran 𝐺) → ((𝑦𝐻𝑥)𝐺(𝑧𝐻𝑥)) = ((𝑧𝐻𝑥)𝐺(𝑦𝐻𝑥))) |
88 | 35, 84, 86, 87 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝐻𝑥)𝐺(𝑧𝐻𝑥)) = ((𝑧𝐻𝑥)𝐺(𝑦𝐻𝑥))) |
89 | 5, 81, 88 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑧𝐻𝑥)𝐺(𝑦𝐻𝑥))) |
90 | 44, 70, 89 | 3eqtr2d 2784 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐺𝑦)𝐻𝑥) = ((𝑧𝐻𝑥)𝐺(𝑦𝐻𝑥))) |
91 | 34, 90 | chvarvv 2002 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐺𝑦)𝐻𝑤) = ((𝑧𝐻𝑤)𝐺(𝑦𝐻𝑤))) |
92 | 25, 91 | chvarvv 2002 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐻𝑤) = ((𝑥𝐻𝑤)𝐺(𝑦𝐻𝑤))) |
93 | 16, 92 | chvarvv 2002 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) |
94 | 7, 93 | sylan2 593 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) |
95 | | iscringd.6 |
. . 3
⊢ (𝜑 → 𝑈 ∈ 𝑋) |
96 | 95 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 𝑈 ∈ 𝑋) |
97 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑥 = 𝑈 → (𝑥𝐻𝑦) = (𝑈𝐻𝑦)) |
98 | | oveq2 7283 |
. . . . . . . 8
⊢ (𝑥 = 𝑈 → (𝑦𝐻𝑥) = (𝑦𝐻𝑈)) |
99 | 97, 98 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑥 = 𝑈 → ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝑈𝐻𝑦) = (𝑦𝐻𝑈))) |
100 | 99 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = 𝑈 → (((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐻𝑦) = (𝑦𝐻𝑈)))) |
101 | 67 | an12s 646 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑋 ∧ (𝜑 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) |
102 | 101 | ex 413 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 → ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥))) |
103 | 100, 102 | vtoclga 3513 |
. . . . 5
⊢ (𝑈 ∈ 𝑋 → ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐻𝑦) = (𝑦𝐻𝑈))) |
104 | 96, 103 | mpcom 38 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐻𝑦) = (𝑦𝐻𝑈)) |
105 | | iscringd.7 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑦𝐻𝑈) = 𝑦) |
106 | 104, 105 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐻𝑦) = 𝑦) |
107 | 1, 2, 3, 4, 5, 94,
95, 106, 105 | isrngod 36056 |
. 2
⊢ (𝜑 → 〈𝐺, 𝐻〉 ∈ RingOps) |
108 | 2 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ran 𝐺)) |
109 | 2 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ran 𝐺)) |
110 | 108, 109 | anbi12d 631 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ↔ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺))) |
111 | 110 | biimpar 478 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
112 | 111, 67 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐺)) → (𝑥𝐻𝑦) = (𝑦𝐻𝑥)) |
113 | 112 | ralrimivva 3123 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐻𝑦) = (𝑦𝐻𝑥)) |
114 | | rnexg 7751 |
. . . . . . . 8
⊢ (𝐺 ∈ AbelOp → ran 𝐺 ∈ V) |
115 | 1, 114 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran 𝐺 ∈ V) |
116 | 2, 115 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ V) |
117 | 116, 116 | xpexd 7601 |
. . . . 5
⊢ (𝜑 → (𝑋 × 𝑋) ∈ V) |
118 | 3, 117 | fexd 7103 |
. . . 4
⊢ (𝜑 → 𝐻 ∈ V) |
119 | | iscom2 36153 |
. . . 4
⊢ ((𝐺 ∈ AbelOp ∧ 𝐻 ∈ V) → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐻𝑦) = (𝑦𝐻𝑥))) |
120 | 1, 118, 119 | syl2anc 584 |
. . 3
⊢ (𝜑 → (〈𝐺, 𝐻〉 ∈ Com2 ↔ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺(𝑥𝐻𝑦) = (𝑦𝐻𝑥))) |
121 | 113, 120 | mpbird 256 |
. 2
⊢ (𝜑 → 〈𝐺, 𝐻〉 ∈ Com2) |
122 | | iscrngo 36154 |
. 2
⊢
(〈𝐺, 𝐻〉 ∈ CRingOps ↔
(〈𝐺, 𝐻〉 ∈ RingOps ∧ 〈𝐺, 𝐻〉 ∈ Com2)) |
123 | 107, 121,
122 | sylanbrc 583 |
1
⊢ (𝜑 → 〈𝐺, 𝐻〉 ∈ CRingOps) |