Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngorngo Structured version   Visualization version   GIF version

Theorem crngorngo 36158
Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
crngorngo (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)

Proof of Theorem crngorngo
StepHypRef Expression
1 iscrngo 36154 . 2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
21simplbi 498 1 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  RingOpscrngo 36052  Com2ccm2 36147  CRingOpsccring 36151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-crngo 36152
This theorem is referenced by:  crngm23  36160  crngm4  36161  crngohomfo  36164  isidlc  36173  dmnrngo  36215  prnc  36225  isfldidl  36226  isfldidl2  36227  ispridlc  36228  pridlc3  36231  isdmn3  36232
  Copyright terms: Public domain W3C validator