Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > crngorngo | Structured version Visualization version GIF version |
Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
crngorngo | ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscrngo 35749 | . 2 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | |
2 | 1 | simplbi 501 | 1 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 RingOpscrngo 35647 Com2ccm2 35742 CRingOpsccring 35746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-crngo 35747 |
This theorem is referenced by: crngm23 35755 crngm4 35756 crngohomfo 35759 isidlc 35768 dmnrngo 35810 prnc 35820 isfldidl 35821 isfldidl2 35822 ispridlc 35823 pridlc3 35826 isdmn3 35827 |
Copyright terms: Public domain | W3C validator |