Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngorngo Structured version   Visualization version   GIF version

Theorem crngorngo 37986
Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
crngorngo (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)

Proof of Theorem crngorngo
StepHypRef Expression
1 iscrngo 37982 . 2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
21simplbi 497 1 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  RingOpscrngo 37880  Com2ccm2 37975  CRingOpsccring 37979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-in 3969  df-crngo 37980
This theorem is referenced by:  crngm23  37988  crngm4  37989  crngohomfo  37992  isidlc  38001  dmnrngo  38043  prnc  38053  isfldidl  38054  isfldidl2  38055  ispridlc  38056  pridlc3  38059  isdmn3  38060
  Copyright terms: Public domain W3C validator