| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > crngorngo | Structured version Visualization version GIF version | ||
| Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| crngorngo | ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscrngo 38035 | . 2 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 RingOpscrngo 37933 Com2ccm2 38028 CRingOpsccring 38032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 df-crngo 38033 |
| This theorem is referenced by: crngm23 38041 crngm4 38042 crngohomfo 38045 isidlc 38054 dmnrngo 38096 prnc 38106 isfldidl 38107 isfldidl2 38108 ispridlc 38109 pridlc3 38112 isdmn3 38113 |
| Copyright terms: Public domain | W3C validator |