![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crngorngo | Structured version Visualization version GIF version |
Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
crngorngo | ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscrngo 37956 | . 2 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 RingOpscrngo 37854 Com2ccm2 37949 CRingOpsccring 37953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-crngo 37954 |
This theorem is referenced by: crngm23 37962 crngm4 37963 crngohomfo 37966 isidlc 37975 dmnrngo 38017 prnc 38027 isfldidl 38028 isfldidl2 38029 ispridlc 38030 pridlc3 38033 isdmn3 38034 |
Copyright terms: Public domain | W3C validator |