Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  crngorngo Structured version   Visualization version   GIF version

Theorem crngorngo 35753
Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Assertion
Ref Expression
crngorngo (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)

Proof of Theorem crngorngo
StepHypRef Expression
1 iscrngo 35749 . 2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
21simplbi 501 1 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  RingOpscrngo 35647  Com2ccm2 35742  CRingOpsccring 35746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-in 3867  df-crngo 35747
This theorem is referenced by:  crngm23  35755  crngm4  35756  crngohomfo  35759  isidlc  35768  dmnrngo  35810  prnc  35820  isfldidl  35821  isfldidl2  35822  ispridlc  35823  pridlc3  35826  isdmn3  35827
  Copyright terms: Public domain W3C validator