Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > crngorngo | Structured version Visualization version GIF version |
Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
crngorngo | ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscrngo 36081 | . 2 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 RingOpscrngo 35979 Com2ccm2 36074 CRingOpsccring 36078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-crngo 36079 |
This theorem is referenced by: crngm23 36087 crngm4 36088 crngohomfo 36091 isidlc 36100 dmnrngo 36142 prnc 36152 isfldidl 36153 isfldidl2 36154 ispridlc 36155 pridlc3 36158 isdmn3 36159 |
Copyright terms: Public domain | W3C validator |