Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > crngorngo | Structured version Visualization version GIF version |
Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
crngorngo | ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscrngo 36154 | . 2 ⊢ (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 RingOpscrngo 36052 Com2ccm2 36147 CRingOpsccring 36151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-crngo 36152 |
This theorem is referenced by: crngm23 36160 crngm4 36161 crngohomfo 36164 isidlc 36173 dmnrngo 36215 prnc 36225 isfldidl 36226 isfldidl2 36227 ispridlc 36228 pridlc3 36231 isdmn3 36232 |
Copyright terms: Public domain | W3C validator |