MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fndmu Structured version   Visualization version   GIF version

Theorem fndmu 6628
Description: A function has a unique domain. (Contributed by NM, 11-Aug-1994.)
Assertion
Ref Expression
fndmu ((𝐹 Fn 𝐴𝐹 Fn 𝐵) → 𝐴 = 𝐵)

Proof of Theorem fndmu
StepHypRef Expression
1 fndm 6624 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
2 fndm 6624 . 2 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
31, 2sylan9req 2786 1 ((𝐹 Fn 𝐴𝐹 Fn 𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  dom cdm 5641   Fn wfn 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-fn 6517
This theorem is referenced by:  fodmrnu  6783  0fz1  13512  lmodfopnelem1  20811  grporn  30457  hon0  31729  2ffzoeq  47332  homf0  49002  funchomf  49090
  Copyright terms: Public domain W3C validator