| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
| Ref | Expression |
|---|---|
| sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | sylan9eq 2790 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 |
| This theorem is referenced by: ordintdif 6403 fndmu 6645 fodmrnu 6798 funcoeqres 6849 eqfnun 7027 sspreima 7058 tz7.44-3 8422 fsetfocdm 8875 dfac5lem4 10140 dfac5lem4OLD 10142 zdiv 12663 hashimarni 14459 fprodss 15964 dvdsmulc 16303 smumullem 16511 cncongrcoprm 16689 mgmidmo 18638 reslmhm2b 21012 fclsfnflim 23965 ustuqtop1 24180 ulm2 26346 sineq0 26485 cxple2a 26660 sqff1o 27144 lgsmodeq 27305 eedimeq 28877 frrusgrord0 30321 grpoidinvlem4 30488 hlimuni 31219 dmdsl3 32296 atoml2i 32364 disjpreima 32565 xrge0npcan 33015 poimirlem3 37647 poimirlem4 37648 poimirlem16 37660 poimirlem17 37661 poimirlem19 37663 poimirlem20 37664 poimirlem23 37667 poimirlem24 37668 poimirlem25 37669 poimirlem29 37673 poimirlem31 37675 unidmqs 38672 ltrncnvnid 40146 cdleme20j 40337 cdleme42ke 40504 dia2dimlem13 41095 dvh4dimN 41466 mapdval4N 41651 ccatcan2d 42302 zdivgd 42386 cnreeu 42513 sineq0ALT 44961 cncfiooicc 45923 fourierdlem41 46177 fourierdlem71 46206 bgoldbtbndlem4 47822 bgoldbtbnd 47823 isubgr3stgrlem8 47985 prcof1 49298 |
| Copyright terms: Public domain | W3C validator |