| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
| Ref | Expression |
|---|---|
| sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | sylan9eq 2784 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: ordintdif 6362 fndmu 6593 fodmrnu 6748 funcoeqres 6799 eqfnun 6975 sspreima 7006 tz7.44-3 8337 fsetfocdm 8795 dfac5lem4 10039 dfac5lem4OLD 10041 zdiv 12564 hashimarni 14366 fprodss 15873 dvdsmulc 16212 smumullem 16421 cncongrcoprm 16599 mgmidmo 18552 reslmhm2b 20976 fclsfnflim 23930 ustuqtop1 24145 ulm2 26310 sineq0 26449 cxple2a 26624 sqff1o 27108 lgsmodeq 27269 eedimeq 28861 frrusgrord0 30302 grpoidinvlem4 30469 hlimuni 31200 dmdsl3 32277 atoml2i 32345 disjpreima 32546 xrge0npcan 32987 poimirlem3 37602 poimirlem4 37603 poimirlem16 37615 poimirlem17 37616 poimirlem19 37618 poimirlem20 37619 poimirlem23 37622 poimirlem24 37623 poimirlem25 37624 poimirlem29 37628 poimirlem31 37630 unidmqs 38631 ltrncnvnid 40106 cdleme20j 40297 cdleme42ke 40464 dia2dimlem13 41055 dvh4dimN 41426 mapdval4N 41611 ccatcan2d 42224 zdivgd 42310 cnreeu 42463 sineq0ALT 44910 cncfiooicc 45876 fourierdlem41 46130 fourierdlem71 46159 bgoldbtbndlem4 47793 bgoldbtbnd 47794 isubgr3stgrlem8 47956 prcof1 49361 |
| Copyright terms: Public domain | W3C validator |