Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
Ref | Expression |
---|---|
sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
4 | 2, 3 | sylan9eq 2799 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: ordintdif 6300 fndmu 6524 fodmrnu 6680 funcoeqres 6730 sspreima 6927 tz7.44-3 8210 dfac5lem4 9813 zdiv 12320 hashimarni 14084 fprodss 15586 dvdsmulc 15921 smumullem 16127 cncongrcoprm 16303 mgmidmo 18259 reslmhm2b 20231 fclsfnflim 23086 ustuqtop1 23301 ulm2 25449 sineq0 25585 cxple2a 25759 sqff1o 26236 lgsmodeq 26395 eedimeq 27169 frrusgrord0 28605 grpoidinvlem4 28770 hlimuni 29501 dmdsl3 30578 atoml2i 30646 disjpreima 30824 xrge0npcan 31205 poimirlem3 35707 poimirlem4 35708 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem23 35727 poimirlem24 35728 poimirlem25 35729 poimirlem29 35733 poimirlem31 35735 eqfnun 35807 unidmqs 36693 ltrncnvnid 38068 cdleme20j 38259 cdleme42ke 38426 dia2dimlem13 39017 dvh4dimN 39388 mapdval4N 39573 ccatcan2d 40145 cnreeu 40359 sineq0ALT 42446 cncfiooicc 43325 fourierdlem41 43579 fourierdlem71 43608 bgoldbtbndlem4 45148 bgoldbtbnd 45149 |
Copyright terms: Public domain | W3C validator |