Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
Ref | Expression |
---|---|
sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2743 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
4 | 2, 3 | sylan9eq 2797 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-cleq 2729 |
This theorem is referenced by: ordintdif 6355 fndmu 6596 fodmrnu 6751 funcoeqres 6802 sspreima 7005 tz7.44-3 8313 dfac5lem4 9987 zdiv 12495 hashimarni 14260 fprodss 15757 dvdsmulc 16092 smumullem 16298 cncongrcoprm 16472 mgmidmo 18441 reslmhm2b 20421 fclsfnflim 23283 ustuqtop1 23498 ulm2 25649 sineq0 25785 cxple2a 25959 sqff1o 26436 lgsmodeq 26595 eedimeq 27554 frrusgrord0 28991 grpoidinvlem4 29156 hlimuni 29887 dmdsl3 30964 atoml2i 31032 disjpreima 31208 xrge0npcan 31588 poimirlem3 35936 poimirlem4 35937 poimirlem16 35949 poimirlem17 35950 poimirlem19 35952 poimirlem20 35953 poimirlem23 35956 poimirlem24 35957 poimirlem25 35958 poimirlem29 35962 poimirlem31 35964 eqfnun 36036 unidmqs 36972 ltrncnvnid 38446 cdleme20j 38637 cdleme42ke 38804 dia2dimlem13 39395 dvh4dimN 39766 mapdval4N 39951 ccatcan2d 40522 cnreeu 40749 sineq0ALT 42930 cncfiooicc 43823 fourierdlem41 44077 fourierdlem71 44106 bgoldbtbndlem4 45678 bgoldbtbnd 45679 |
Copyright terms: Public domain | W3C validator |