![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
Ref | Expression |
---|---|
sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
4 | 2, 3 | sylan9eq 2800 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: ordintdif 6445 fndmu 6686 fodmrnu 6842 funcoeqres 6893 eqfnun 7070 sspreima 7101 tz7.44-3 8464 fsetfocdm 8919 dfac5lem4 10195 dfac5lem4OLD 10197 zdiv 12713 hashimarni 14490 fprodss 15996 dvdsmulc 16332 smumullem 16538 cncongrcoprm 16717 mgmidmo 18698 reslmhm2b 21076 fclsfnflim 24056 ustuqtop1 24271 ulm2 26446 sineq0 26584 cxple2a 26759 sqff1o 27243 lgsmodeq 27404 eedimeq 28931 frrusgrord0 30372 grpoidinvlem4 30539 hlimuni 31270 dmdsl3 32347 atoml2i 32415 disjpreima 32606 xrge0npcan 33006 poimirlem3 37583 poimirlem4 37584 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 poimirlem23 37603 poimirlem24 37604 poimirlem25 37605 poimirlem29 37609 poimirlem31 37611 unidmqs 38610 ltrncnvnid 40084 cdleme20j 40275 cdleme42ke 40442 dia2dimlem13 41033 dvh4dimN 41404 mapdval4N 41589 ccatcan2d 42246 zdivgd 42324 cnreeu 42446 sineq0ALT 44908 cncfiooicc 45815 fourierdlem41 46069 fourierdlem71 46098 bgoldbtbndlem4 47682 bgoldbtbnd 47683 |
Copyright terms: Public domain | W3C validator |