| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
| Ref | Expression |
|---|---|
| sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | sylan9eq 2784 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: ordintdif 6383 fndmu 6625 fodmrnu 6780 funcoeqres 6831 eqfnun 7009 sspreima 7040 tz7.44-3 8376 fsetfocdm 8834 dfac5lem4 10079 dfac5lem4OLD 10081 zdiv 12604 hashimarni 14406 fprodss 15914 dvdsmulc 16253 smumullem 16462 cncongrcoprm 16640 mgmidmo 18587 reslmhm2b 20961 fclsfnflim 23914 ustuqtop1 24129 ulm2 26294 sineq0 26433 cxple2a 26608 sqff1o 27092 lgsmodeq 27253 eedimeq 28825 frrusgrord0 30269 grpoidinvlem4 30436 hlimuni 31167 dmdsl3 32244 atoml2i 32312 disjpreima 32513 xrge0npcan 32961 poimirlem3 37617 poimirlem4 37618 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem23 37637 poimirlem24 37638 poimirlem25 37639 poimirlem29 37643 poimirlem31 37645 unidmqs 38646 ltrncnvnid 40121 cdleme20j 40312 cdleme42ke 40479 dia2dimlem13 41070 dvh4dimN 41441 mapdval4N 41626 ccatcan2d 42239 zdivgd 42325 cnreeu 42478 sineq0ALT 44926 cncfiooicc 45892 fourierdlem41 46146 fourierdlem71 46175 bgoldbtbndlem4 47809 bgoldbtbnd 47810 isubgr3stgrlem8 47972 prcof1 49377 |
| Copyright terms: Public domain | W3C validator |