![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
Ref | Expression |
---|---|
sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2784 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
4 | 2, 3 | sylan9eq 2834 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-cleq 2770 |
This theorem is referenced by: ordintdif 6025 fndmu 6238 fodmrnu 6374 funcoeqres 6421 tz7.44-3 7787 dfac5lem4 9282 zdiv 11799 hashimarni 13542 fprodss 15081 dvdsmulc 15416 smumullem 15620 cncongrcoprm 15789 mgmidmo 17645 reslmhm2b 19449 fclsfnflim 22239 ustuqtop1 22453 ulm2 24576 sineq0 24711 cxple2a 24882 sqff1o 25360 lgsmodeq 25519 eedimeq 26247 frrusgrord0 27748 grpoidinvlem4 27934 hlimuni 28667 dmdsl3 29746 atoml2i 29814 disjpreima 29960 sspreima 30012 xrge0npcan 30256 poimirlem3 34038 poimirlem4 34039 poimirlem16 34051 poimirlem17 34052 poimirlem19 34054 poimirlem20 34055 poimirlem23 34058 poimirlem24 34059 poimirlem25 34060 poimirlem29 34064 poimirlem31 34066 eqfnun 34141 ltrncnvnid 36281 cdleme20j 36472 cdleme42ke 36639 dia2dimlem13 37230 dvh4dimN 37601 mapdval4N 37786 sineq0ALT 40106 cncfiooicc 41035 fourierdlem41 41292 fourierdlem71 41321 bgoldbtbndlem4 42721 bgoldbtbnd 42722 |
Copyright terms: Public domain | W3C validator |