| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
| Ref | Expression |
|---|---|
| sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2736 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | sylan9eq 2785 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: ordintdif 6386 fndmu 6628 fodmrnu 6783 funcoeqres 6834 eqfnun 7012 sspreima 7043 tz7.44-3 8379 fsetfocdm 8837 dfac5lem4 10086 dfac5lem4OLD 10088 zdiv 12611 hashimarni 14413 fprodss 15921 dvdsmulc 16260 smumullem 16469 cncongrcoprm 16647 mgmidmo 18594 reslmhm2b 20968 fclsfnflim 23921 ustuqtop1 24136 ulm2 26301 sineq0 26440 cxple2a 26615 sqff1o 27099 lgsmodeq 27260 eedimeq 28832 frrusgrord0 30276 grpoidinvlem4 30443 hlimuni 31174 dmdsl3 32251 atoml2i 32319 disjpreima 32520 xrge0npcan 32968 poimirlem3 37624 poimirlem4 37625 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 poimirlem23 37644 poimirlem24 37645 poimirlem25 37646 poimirlem29 37650 poimirlem31 37652 unidmqs 38653 ltrncnvnid 40128 cdleme20j 40319 cdleme42ke 40486 dia2dimlem13 41077 dvh4dimN 41448 mapdval4N 41633 ccatcan2d 42246 zdivgd 42332 cnreeu 42485 sineq0ALT 44933 cncfiooicc 45899 fourierdlem41 46153 fourierdlem71 46182 bgoldbtbndlem4 47813 bgoldbtbnd 47814 isubgr3stgrlem8 47976 prcof1 49381 |
| Copyright terms: Public domain | W3C validator |