![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
Ref | Expression |
---|---|
sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
4 | 2, 3 | sylan9eq 2795 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: ordintdif 6436 fndmu 6676 fodmrnu 6829 funcoeqres 6880 eqfnun 7057 sspreima 7088 tz7.44-3 8447 fsetfocdm 8900 dfac5lem4 10164 dfac5lem4OLD 10166 zdiv 12686 hashimarni 14477 fprodss 15981 dvdsmulc 16318 smumullem 16526 cncongrcoprm 16704 mgmidmo 18686 reslmhm2b 21071 fclsfnflim 24051 ustuqtop1 24266 ulm2 26443 sineq0 26581 cxple2a 26756 sqff1o 27240 lgsmodeq 27401 eedimeq 28928 frrusgrord0 30369 grpoidinvlem4 30536 hlimuni 31267 dmdsl3 32344 atoml2i 32412 disjpreima 32604 xrge0npcan 33008 poimirlem3 37610 poimirlem4 37611 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 poimirlem23 37630 poimirlem24 37631 poimirlem25 37632 poimirlem29 37636 poimirlem31 37638 unidmqs 38636 ltrncnvnid 40110 cdleme20j 40301 cdleme42ke 40468 dia2dimlem13 41059 dvh4dimN 41430 mapdval4N 41615 ccatcan2d 42271 zdivgd 42351 cnreeu 42477 sineq0ALT 44935 cncfiooicc 45850 fourierdlem41 46104 fourierdlem71 46133 bgoldbtbndlem4 47733 bgoldbtbnd 47734 isubgr3stgrlem8 47876 |
Copyright terms: Public domain | W3C validator |