| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
| Ref | Expression |
|---|---|
| sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2736 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | sylan9eq 2785 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2722 |
| This theorem is referenced by: ordintdif 6353 fndmu 6584 fodmrnu 6739 funcoeqres 6790 eqfnun 6965 sspreima 6996 tz7.44-3 8322 fsetfocdm 8780 dfac5lem4 10009 dfac5lem4OLD 10011 zdiv 12535 hashimarni 14340 fprodss 15847 dvdsmulc 16186 smumullem 16395 cncongrcoprm 16573 mgmidmo 18560 reslmhm2b 20981 fclsfnflim 23935 ustuqtop1 24149 ulm2 26314 sineq0 26453 cxple2a 26628 sqff1o 27112 lgsmodeq 27273 eedimeq 28869 frrusgrord0 30310 grpoidinvlem4 30477 hlimuni 31208 dmdsl3 32285 atoml2i 32353 disjpreima 32554 xrge0npcan 32991 poimirlem3 37642 poimirlem4 37643 poimirlem16 37655 poimirlem17 37656 poimirlem19 37658 poimirlem20 37659 poimirlem23 37662 poimirlem24 37663 poimirlem25 37664 poimirlem29 37668 poimirlem31 37670 unidmqs 38671 ltrncnvnid 40145 cdleme20j 40336 cdleme42ke 40503 dia2dimlem13 41094 dvh4dimN 41465 mapdval4N 41650 ccatcan2d 42263 zdivgd 42349 cnreeu 42502 sineq0ALT 44948 cncfiooicc 45911 fourierdlem41 46165 fourierdlem71 46194 bgoldbtbndlem4 47818 bgoldbtbnd 47819 isubgr3stgrlem8 47983 prcof1 49399 |
| Copyright terms: Public domain | W3C validator |