Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
Ref | Expression |
---|---|
sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2745 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
4 | 2, 3 | sylan9eq 2799 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 |
This theorem is referenced by: ordintdif 6319 fndmu 6549 fodmrnu 6705 funcoeqres 6756 sspreima 6954 tz7.44-3 8248 dfac5lem4 9891 zdiv 12399 hashimarni 14165 fprodss 15667 dvdsmulc 16002 smumullem 16208 cncongrcoprm 16384 mgmidmo 18353 reslmhm2b 20325 fclsfnflim 23187 ustuqtop1 23402 ulm2 25553 sineq0 25689 cxple2a 25863 sqff1o 26340 lgsmodeq 26499 eedimeq 27275 frrusgrord0 28713 grpoidinvlem4 28878 hlimuni 29609 dmdsl3 30686 atoml2i 30754 disjpreima 30932 xrge0npcan 31312 poimirlem3 35789 poimirlem4 35790 poimirlem16 35802 poimirlem17 35803 poimirlem19 35805 poimirlem20 35806 poimirlem23 35809 poimirlem24 35810 poimirlem25 35811 poimirlem29 35815 poimirlem31 35817 eqfnun 35889 unidmqs 36773 ltrncnvnid 38148 cdleme20j 38339 cdleme42ke 38506 dia2dimlem13 39097 dvh4dimN 39468 mapdval4N 39653 ccatcan2d 40226 cnreeu 40445 sineq0ALT 42564 cncfiooicc 43442 fourierdlem41 43696 fourierdlem71 43725 bgoldbtbndlem4 45271 bgoldbtbnd 45272 |
Copyright terms: Public domain | W3C validator |