| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9req | Structured version Visualization version GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 23-Jun-2007.) |
| Ref | Expression |
|---|---|
| sylan9req.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
| sylan9req.2 | ⊢ (𝜓 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| sylan9req | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9req.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2739 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3 | sylan9req.2 | . 2 ⊢ (𝜓 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | sylan9eq 2788 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 |
| This theorem is referenced by: ordintdif 6365 fndmu 6596 fodmrnu 6751 funcoeqres 6802 eqfnun 6979 sspreima 7010 tz7.44-3 8336 fsetfocdm 8794 dfac5lem4 10027 dfac5lem4OLD 10029 zdiv 12553 hashimarni 14358 fprodss 15865 dvdsmulc 16204 smumullem 16413 cncongrcoprm 16591 mgmidmo 18578 reslmhm2b 20998 fclsfnflim 23952 ustuqtop1 24166 ulm2 26331 sineq0 26470 cxple2a 26645 sqff1o 27129 lgsmodeq 27290 eedimeq 28887 frrusgrord0 30331 grpoidinvlem4 30498 hlimuni 31229 dmdsl3 32306 atoml2i 32374 disjpreima 32575 xrge0npcan 33012 poimirlem3 37673 poimirlem4 37674 poimirlem16 37686 poimirlem17 37687 poimirlem19 37689 poimirlem20 37690 poimirlem23 37693 poimirlem24 37694 poimirlem25 37695 poimirlem29 37699 poimirlem31 37701 unidmqs 38762 ltrncnvnid 40236 cdleme20j 40427 cdleme42ke 40594 dia2dimlem13 41185 dvh4dimN 41556 mapdval4N 41741 ccatcan2d 42359 zdivgd 42445 cnreeu 42598 sineq0ALT 45043 cncfiooicc 46006 fourierdlem41 46260 fourierdlem71 46289 bgoldbtbndlem4 47922 bgoldbtbnd 47923 isubgr3stgrlem8 48087 prcof1 49503 |
| Copyright terms: Public domain | W3C validator |