Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ffzoeq Structured version   Visualization version   GIF version

Theorem 2ffzoeq 43885
Description: Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
Assertion
Ref Expression
2ffzoeq (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀   𝑃,𝑖
Allowed substitution hints:   𝑁(𝑖)   𝑋(𝑖)   𝑌(𝑖)

Proof of Theorem 2ffzoeq
StepHypRef Expression
1 eqeq1 2802 . . . . . . . . . . . 12 (𝐹 = 𝑃 → (𝐹 = ∅ ↔ 𝑃 = ∅))
21anbi1d 632 . . . . . . . . . . 11 (𝐹 = 𝑃 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) ↔ (𝑃 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌)))
3 f0bi 6536 . . . . . . . . . . . . 13 (𝑃:∅⟶𝑌𝑃 = ∅)
4 ffn 6487 . . . . . . . . . . . . . 14 (𝑃:(0..^𝑁)⟶𝑌𝑃 Fn (0..^𝑁))
5 ffn 6487 . . . . . . . . . . . . . 14 (𝑃:∅⟶𝑌𝑃 Fn ∅)
6 fndmu 6429 . . . . . . . . . . . . . . . 16 ((𝑃 Fn (0..^𝑁) ∧ 𝑃 Fn ∅) → (0..^𝑁) = ∅)
7 0z 11980 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
8 nn0z 11993 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
98adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
10 fzon 13053 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
117, 9, 10sylancr 590 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
12 nn0ge0 11910 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
13 0red 10633 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 0 ∈ ℝ)
14 nn0re 11894 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1513, 14letri3d 10771 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (0 = 𝑁 ↔ (0 ≤ 𝑁𝑁 ≤ 0)))
1615biimprd 251 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((0 ≤ 𝑁𝑁 ≤ 0) → 0 = 𝑁))
1712, 16mpand 694 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 → 0 = 𝑁))
1817adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ≤ 0 → 0 = 𝑁))
1911, 18sylbird 263 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0..^𝑁) = ∅ → 0 = 𝑁))
206, 19syl5com 31 . . . . . . . . . . . . . . 15 ((𝑃 Fn (0..^𝑁) ∧ 𝑃 Fn ∅) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁))
2120ex 416 . . . . . . . . . . . . . 14 (𝑃 Fn (0..^𝑁) → (𝑃 Fn ∅ → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
224, 5, 21syl2imc 41 . . . . . . . . . . . . 13 (𝑃:∅⟶𝑌 → (𝑃:(0..^𝑁)⟶𝑌 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
233, 22sylbir 238 . . . . . . . . . . . 12 (𝑃 = ∅ → (𝑃:(0..^𝑁)⟶𝑌 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
2423imp 410 . . . . . . . . . . 11 ((𝑃 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁))
252, 24syl6bi 256 . . . . . . . . . 10 (𝐹 = 𝑃 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
2625com3l 89 . . . . . . . . 9 ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁)))
2726a1i 11 . . . . . . . 8 (𝑀 = 0 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁))))
28 oveq2 7143 . . . . . . . . . . . 12 (𝑀 = 0 → (0..^𝑀) = (0..^0))
29 fzo0 13056 . . . . . . . . . . . 12 (0..^0) = ∅
3028, 29eqtrdi 2849 . . . . . . . . . . 11 (𝑀 = 0 → (0..^𝑀) = ∅)
3130feq2d 6473 . . . . . . . . . 10 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹:∅⟶𝑋))
32 f0bi 6536 . . . . . . . . . 10 (𝐹:∅⟶𝑋𝐹 = ∅)
3331, 32syl6bb 290 . . . . . . . . 9 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
3433anbi1d 632 . . . . . . . 8 (𝑀 = 0 → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) ↔ (𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌)))
35 eqeq1 2802 . . . . . . . . . 10 (𝑀 = 0 → (𝑀 = 𝑁 ↔ 0 = 𝑁))
3635imbi2d 344 . . . . . . . . 9 (𝑀 = 0 → ((𝐹 = 𝑃𝑀 = 𝑁) ↔ (𝐹 = 𝑃 → 0 = 𝑁)))
3736imbi2d 344 . . . . . . . 8 (𝑀 = 0 → (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃𝑀 = 𝑁)) ↔ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁))))
3827, 34, 373imtr4d 297 . . . . . . 7 (𝑀 = 0 → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃𝑀 = 𝑁))))
3938com3l 89 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 0 → (𝐹 = 𝑃𝑀 = 𝑁))))
4039impcom 411 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝑀 = 0 → (𝐹 = 𝑃𝑀 = 𝑁)))
4140impcom 411 . . . 4 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃𝑀 = 𝑁))
4228feq2d 6473 . . . . . . . . . . . 12 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹:(0..^0)⟶𝑋))
4329feq2i 6479 . . . . . . . . . . . . 13 (𝐹:(0..^0)⟶𝑋𝐹:∅⟶𝑋)
4443, 32bitri 278 . . . . . . . . . . . 12 (𝐹:(0..^0)⟶𝑋𝐹 = ∅)
4542, 44syl6bb 290 . . . . . . . . . . 11 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
4645adantr 484 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
47 eqeq1 2802 . . . . . . . . . . . 12 (𝑀 = 𝑁 → (𝑀 = 0 ↔ 𝑁 = 0))
4847biimpac 482 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → 𝑁 = 0)
49 oveq2 7143 . . . . . . . . . . . . 13 (𝑁 = 0 → (0..^𝑁) = (0..^0))
5049feq2d 6473 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑃:(0..^𝑁)⟶𝑌𝑃:(0..^0)⟶𝑌))
5129feq2i 6479 . . . . . . . . . . . . 13 (𝑃:(0..^0)⟶𝑌𝑃:∅⟶𝑌)
5251, 3bitri 278 . . . . . . . . . . . 12 (𝑃:(0..^0)⟶𝑌𝑃 = ∅)
5350, 52syl6bb 290 . . . . . . . . . . 11 (𝑁 = 0 → (𝑃:(0..^𝑁)⟶𝑌𝑃 = ∅))
5448, 53syl 17 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → (𝑃:(0..^𝑁)⟶𝑌𝑃 = ∅))
5546, 54anbi12d 633 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) ↔ (𝐹 = ∅ ∧ 𝑃 = ∅)))
56 eqtr3 2820 . . . . . . . . 9 ((𝐹 = ∅ ∧ 𝑃 = ∅) → 𝐹 = 𝑃)
5755, 56syl6bi 256 . . . . . . . 8 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → 𝐹 = 𝑃))
5857com12 32 . . . . . . 7 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 = 0 ∧ 𝑀 = 𝑁) → 𝐹 = 𝑃))
5958expd 419 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → (𝑀 = 0 → (𝑀 = 𝑁𝐹 = 𝑃)))
6059adantl 485 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝑀 = 0 → (𝑀 = 𝑁𝐹 = 𝑃)))
6160impcom 411 . . . 4 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝑀 = 𝑁𝐹 = 𝑃))
6241, 61impbid 215 . . 3 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃𝑀 = 𝑁))
63 ral0 4414 . . . . . 6 𝑖 ∈ ∅ (𝐹𝑖) = (𝑃𝑖)
6430raleqdv 3364 . . . . . 6 (𝑀 = 0 → (∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖) ↔ ∀𝑖 ∈ ∅ (𝐹𝑖) = (𝑃𝑖)))
6563, 64mpbiri 261 . . . . 5 (𝑀 = 0 → ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))
6665biantrud 535 . . . 4 (𝑀 = 0 → (𝑀 = 𝑁 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
6766adantr 484 . . 3 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝑀 = 𝑁 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
6862, 67bitrd 282 . 2 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
69 ffn 6487 . . . . . . 7 (𝐹:(0..^𝑀)⟶𝑋𝐹 Fn (0..^𝑀))
7069, 4anim12i 615 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
7170adantl 485 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
7271adantl 485 . . . 4 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
73 eqfnfv2 6780 . . . 4 ((𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)) → (𝐹 = 𝑃 ↔ ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
7472, 73syl 17 . . 3 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
75 df-ne 2988 . . . . . 6 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
76 elnnne0 11899 . . . . . . . 8 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0𝑀 ≠ 0))
77 0zd 11981 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 ∈ ℤ)
78 nnz 11992 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
79 nngt0 11656 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 < 𝑀)
8077, 78, 793jca 1125 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
8180adantr 484 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
82 fzoopth 43884 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
84 simpr 488 . . . . . . . . . . . 12 ((0 = 0 ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁)
8583, 84syl6bi 256 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((0..^𝑀) = (0..^𝑁) → 𝑀 = 𝑁))
8685anim1d 613 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) → (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
87 oveq2 7143 . . . . . . . . . . 11 (𝑀 = 𝑁 → (0..^𝑀) = (0..^𝑁))
8887anim1i 617 . . . . . . . . . 10 ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) → ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))
8986, 88impbid1 228 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9089ex 416 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9176, 90sylbir 238 . . . . . . 7 ((𝑀 ∈ ℕ0𝑀 ≠ 0) → (𝑁 ∈ ℕ0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9291impancom 455 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ≠ 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9375, 92syl5bir 246 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑀 = 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9493adantr 484 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (¬ 𝑀 = 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9594impcom 411 . . 3 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9674, 95bitrd 282 . 2 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9768, 96pm2.61ian 811 1 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  c0 4243   class class class wbr 5030   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526   < clt 10664  cle 10665  cn 11625  0cn0 11885  cz 11969  ..^cfzo 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator