Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ffzoeq Structured version   Visualization version   GIF version

Theorem 2ffzoeq 47364
Description: Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
Assertion
Ref Expression
2ffzoeq (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀   𝑃,𝑖
Allowed substitution hints:   𝑁(𝑖)   𝑋(𝑖)   𝑌(𝑖)

Proof of Theorem 2ffzoeq
StepHypRef Expression
1 eqeq1 2735 . . . . . . . . . . . 12 (𝐹 = 𝑃 → (𝐹 = ∅ ↔ 𝑃 = ∅))
21anbi1d 631 . . . . . . . . . . 11 (𝐹 = 𝑃 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) ↔ (𝑃 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌)))
3 f0bi 6706 . . . . . . . . . . . . 13 (𝑃:∅⟶𝑌𝑃 = ∅)
4 ffn 6651 . . . . . . . . . . . . . 14 (𝑃:(0..^𝑁)⟶𝑌𝑃 Fn (0..^𝑁))
5 ffn 6651 . . . . . . . . . . . . . 14 (𝑃:∅⟶𝑌𝑃 Fn ∅)
6 fndmu 6588 . . . . . . . . . . . . . . . 16 ((𝑃 Fn (0..^𝑁) ∧ 𝑃 Fn ∅) → (0..^𝑁) = ∅)
7 0z 12479 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
8 nn0z 12493 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
98adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
10 fzon 13580 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
117, 9, 10sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
12 nn0ge0 12406 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
13 0red 11115 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 0 ∈ ℝ)
14 nn0re 12390 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1513, 14letri3d 11255 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (0 = 𝑁 ↔ (0 ≤ 𝑁𝑁 ≤ 0)))
1615biimprd 248 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((0 ≤ 𝑁𝑁 ≤ 0) → 0 = 𝑁))
1712, 16mpand 695 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 → 0 = 𝑁))
1817adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ≤ 0 → 0 = 𝑁))
1911, 18sylbird 260 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0..^𝑁) = ∅ → 0 = 𝑁))
206, 19syl5com 31 . . . . . . . . . . . . . . 15 ((𝑃 Fn (0..^𝑁) ∧ 𝑃 Fn ∅) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁))
2120ex 412 . . . . . . . . . . . . . 14 (𝑃 Fn (0..^𝑁) → (𝑃 Fn ∅ → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
224, 5, 21syl2imc 41 . . . . . . . . . . . . 13 (𝑃:∅⟶𝑌 → (𝑃:(0..^𝑁)⟶𝑌 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
233, 22sylbir 235 . . . . . . . . . . . 12 (𝑃 = ∅ → (𝑃:(0..^𝑁)⟶𝑌 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
2423imp 406 . . . . . . . . . . 11 ((𝑃 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁))
252, 24biimtrdi 253 . . . . . . . . . 10 (𝐹 = 𝑃 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
2625com3l 89 . . . . . . . . 9 ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁)))
2726a1i 11 . . . . . . . 8 (𝑀 = 0 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁))))
28 oveq2 7354 . . . . . . . . . . . 12 (𝑀 = 0 → (0..^𝑀) = (0..^0))
29 fzo0 13583 . . . . . . . . . . . 12 (0..^0) = ∅
3028, 29eqtrdi 2782 . . . . . . . . . . 11 (𝑀 = 0 → (0..^𝑀) = ∅)
3130feq2d 6635 . . . . . . . . . 10 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹:∅⟶𝑋))
32 f0bi 6706 . . . . . . . . . 10 (𝐹:∅⟶𝑋𝐹 = ∅)
3331, 32bitrdi 287 . . . . . . . . 9 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
3433anbi1d 631 . . . . . . . 8 (𝑀 = 0 → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) ↔ (𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌)))
35 eqeq1 2735 . . . . . . . . . 10 (𝑀 = 0 → (𝑀 = 𝑁 ↔ 0 = 𝑁))
3635imbi2d 340 . . . . . . . . 9 (𝑀 = 0 → ((𝐹 = 𝑃𝑀 = 𝑁) ↔ (𝐹 = 𝑃 → 0 = 𝑁)))
3736imbi2d 340 . . . . . . . 8 (𝑀 = 0 → (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃𝑀 = 𝑁)) ↔ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁))))
3827, 34, 373imtr4d 294 . . . . . . 7 (𝑀 = 0 → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃𝑀 = 𝑁))))
3938com3l 89 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 0 → (𝐹 = 𝑃𝑀 = 𝑁))))
4039impcom 407 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝑀 = 0 → (𝐹 = 𝑃𝑀 = 𝑁)))
4140impcom 407 . . . 4 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃𝑀 = 𝑁))
4228feq2d 6635 . . . . . . . . . . . 12 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹:(0..^0)⟶𝑋))
4329feq2i 6643 . . . . . . . . . . . . 13 (𝐹:(0..^0)⟶𝑋𝐹:∅⟶𝑋)
4443, 32bitri 275 . . . . . . . . . . . 12 (𝐹:(0..^0)⟶𝑋𝐹 = ∅)
4542, 44bitrdi 287 . . . . . . . . . . 11 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
4645adantr 480 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
47 eqeq1 2735 . . . . . . . . . . . 12 (𝑀 = 𝑁 → (𝑀 = 0 ↔ 𝑁 = 0))
4847biimpac 478 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → 𝑁 = 0)
49 oveq2 7354 . . . . . . . . . . . . 13 (𝑁 = 0 → (0..^𝑁) = (0..^0))
5049feq2d 6635 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑃:(0..^𝑁)⟶𝑌𝑃:(0..^0)⟶𝑌))
5129feq2i 6643 . . . . . . . . . . . . 13 (𝑃:(0..^0)⟶𝑌𝑃:∅⟶𝑌)
5251, 3bitri 275 . . . . . . . . . . . 12 (𝑃:(0..^0)⟶𝑌𝑃 = ∅)
5350, 52bitrdi 287 . . . . . . . . . . 11 (𝑁 = 0 → (𝑃:(0..^𝑁)⟶𝑌𝑃 = ∅))
5448, 53syl 17 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → (𝑃:(0..^𝑁)⟶𝑌𝑃 = ∅))
5546, 54anbi12d 632 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) ↔ (𝐹 = ∅ ∧ 𝑃 = ∅)))
56 eqtr3 2753 . . . . . . . . 9 ((𝐹 = ∅ ∧ 𝑃 = ∅) → 𝐹 = 𝑃)
5755, 56biimtrdi 253 . . . . . . . 8 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → 𝐹 = 𝑃))
5857com12 32 . . . . . . 7 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 = 0 ∧ 𝑀 = 𝑁) → 𝐹 = 𝑃))
5958expd 415 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → (𝑀 = 0 → (𝑀 = 𝑁𝐹 = 𝑃)))
6059adantl 481 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝑀 = 0 → (𝑀 = 𝑁𝐹 = 𝑃)))
6160impcom 407 . . . 4 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝑀 = 𝑁𝐹 = 𝑃))
6241, 61impbid 212 . . 3 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃𝑀 = 𝑁))
63 ral0 4463 . . . . . 6 𝑖 ∈ ∅ (𝐹𝑖) = (𝑃𝑖)
6430raleqdv 3292 . . . . . 6 (𝑀 = 0 → (∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖) ↔ ∀𝑖 ∈ ∅ (𝐹𝑖) = (𝑃𝑖)))
6563, 64mpbiri 258 . . . . 5 (𝑀 = 0 → ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))
6665biantrud 531 . . . 4 (𝑀 = 0 → (𝑀 = 𝑁 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
6766adantr 480 . . 3 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝑀 = 𝑁 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
6862, 67bitrd 279 . 2 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
69 ffn 6651 . . . . . . 7 (𝐹:(0..^𝑀)⟶𝑋𝐹 Fn (0..^𝑀))
7069, 4anim12i 613 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
7170adantl 481 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
7271adantl 481 . . . 4 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
73 eqfnfv2 6965 . . . 4 ((𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)) → (𝐹 = 𝑃 ↔ ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
7472, 73syl 17 . . 3 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
75 df-ne 2929 . . . . . 6 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
76 elnnne0 12395 . . . . . . . 8 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0𝑀 ≠ 0))
77 0zd 12480 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 ∈ ℤ)
78 nnz 12489 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
79 nngt0 12156 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 < 𝑀)
8077, 78, 793jca 1128 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
8180adantr 480 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
82 fzoopth 13662 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
84 simpr 484 . . . . . . . . . . . 12 ((0 = 0 ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁)
8583, 84biimtrdi 253 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((0..^𝑀) = (0..^𝑁) → 𝑀 = 𝑁))
8685anim1d 611 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) → (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
87 oveq2 7354 . . . . . . . . . . 11 (𝑀 = 𝑁 → (0..^𝑀) = (0..^𝑁))
8887anim1i 615 . . . . . . . . . 10 ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) → ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))
8986, 88impbid1 225 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9089ex 412 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9176, 90sylbir 235 . . . . . . 7 ((𝑀 ∈ ℕ0𝑀 ≠ 0) → (𝑁 ∈ ℕ0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9291impancom 451 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ≠ 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9375, 92biimtrrid 243 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑀 = 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9493adantr 480 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (¬ 𝑀 = 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9594impcom 407 . . 3 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9674, 95bitrd 279 . 2 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9768, 96pm2.61ian 811 1 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  c0 4283   class class class wbr 5091   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006   < clt 11146  cle 11147  cn 12125  0cn0 12381  cz 12468  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator