Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ffzoeq Structured version   Visualization version   GIF version

Theorem 2ffzoeq 41913
Description: Two functions over a half-open range of nonnegative integers are equal if and only if their domains have the same length and the function values are the same at each position. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
Assertion
Ref Expression
2ffzoeq (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀   𝑃,𝑖
Allowed substitution hints:   𝑁(𝑖)   𝑋(𝑖)   𝑌(𝑖)

Proof of Theorem 2ffzoeq
StepHypRef Expression
1 eqeq1 2810 . . . . . . . . . . . 12 (𝐹 = 𝑃 → (𝐹 = ∅ ↔ 𝑃 = ∅))
21anbi1d 617 . . . . . . . . . . 11 (𝐹 = 𝑃 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) ↔ (𝑃 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌)))
3 f0bi 6303 . . . . . . . . . . . . 13 (𝑃:∅⟶𝑌𝑃 = ∅)
4 ffn 6256 . . . . . . . . . . . . . 14 (𝑃:(0..^𝑁)⟶𝑌𝑃 Fn (0..^𝑁))
5 ffn 6256 . . . . . . . . . . . . . 14 (𝑃:∅⟶𝑌𝑃 Fn ∅)
6 fndmu 6203 . . . . . . . . . . . . . . . 16 ((𝑃 Fn (0..^𝑁) ∧ 𝑃 Fn ∅) → (0..^𝑁) = ∅)
7 0z 11654 . . . . . . . . . . . . . . . . . 18 0 ∈ ℤ
8 nn0z 11666 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
98adantl 469 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
10 fzon 12713 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
117, 9, 10sylancr 577 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ≤ 0 ↔ (0..^𝑁) = ∅))
12 nn0ge0 11584 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
13 0red 10328 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → 0 ∈ ℝ)
14 nn0re 11568 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1513, 14letri3d 10464 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (0 = 𝑁 ↔ (0 ≤ 𝑁𝑁 ≤ 0)))
1615biimprd 239 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → ((0 ≤ 𝑁𝑁 ≤ 0) → 0 = 𝑁))
1712, 16mpand 678 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 ≤ 0 → 0 = 𝑁))
1817adantl 469 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 ≤ 0 → 0 = 𝑁))
1911, 18sylbird 251 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0..^𝑁) = ∅ → 0 = 𝑁))
206, 19syl5com 31 . . . . . . . . . . . . . . 15 ((𝑃 Fn (0..^𝑁) ∧ 𝑃 Fn ∅) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁))
2120ex 399 . . . . . . . . . . . . . 14 (𝑃 Fn (0..^𝑁) → (𝑃 Fn ∅ → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
224, 5, 21syl2imc 41 . . . . . . . . . . . . 13 (𝑃:∅⟶𝑌 → (𝑃:(0..^𝑁)⟶𝑌 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
233, 22sylbir 226 . . . . . . . . . . . 12 (𝑃 = ∅ → (𝑃:(0..^𝑁)⟶𝑌 → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
2423imp 395 . . . . . . . . . . 11 ((𝑃 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁))
252, 24syl6bi 244 . . . . . . . . . 10 (𝐹 = 𝑃 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 = 𝑁)))
2625com3l 89 . . . . . . . . 9 ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁)))
2726a1i 11 . . . . . . . 8 (𝑀 = 0 → ((𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁))))
28 oveq2 6882 . . . . . . . . . . . 12 (𝑀 = 0 → (0..^𝑀) = (0..^0))
29 fzo0 12716 . . . . . . . . . . . 12 (0..^0) = ∅
3028, 29syl6eq 2856 . . . . . . . . . . 11 (𝑀 = 0 → (0..^𝑀) = ∅)
3130feq2d 6242 . . . . . . . . . 10 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹:∅⟶𝑋))
32 f0bi 6303 . . . . . . . . . 10 (𝐹:∅⟶𝑋𝐹 = ∅)
3331, 32syl6bb 278 . . . . . . . . 9 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
3433anbi1d 617 . . . . . . . 8 (𝑀 = 0 → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) ↔ (𝐹 = ∅ ∧ 𝑃:(0..^𝑁)⟶𝑌)))
35 eqeq1 2810 . . . . . . . . . 10 (𝑀 = 0 → (𝑀 = 𝑁 ↔ 0 = 𝑁))
3635imbi2d 331 . . . . . . . . 9 (𝑀 = 0 → ((𝐹 = 𝑃𝑀 = 𝑁) ↔ (𝐹 = 𝑃 → 0 = 𝑁)))
3736imbi2d 331 . . . . . . . 8 (𝑀 = 0 → (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃𝑀 = 𝑁)) ↔ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃 → 0 = 𝑁))))
3827, 34, 373imtr4d 285 . . . . . . 7 (𝑀 = 0 → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐹 = 𝑃𝑀 = 𝑁))))
3938com3l 89 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 0 → (𝐹 = 𝑃𝑀 = 𝑁))))
4039impcom 396 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝑀 = 0 → (𝐹 = 𝑃𝑀 = 𝑁)))
4140impcom 396 . . . 4 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃𝑀 = 𝑁))
4228feq2d 6242 . . . . . . . . . . . 12 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹:(0..^0)⟶𝑋))
4329feq2i 6248 . . . . . . . . . . . . 13 (𝐹:(0..^0)⟶𝑋𝐹:∅⟶𝑋)
4443, 32bitri 266 . . . . . . . . . . . 12 (𝐹:(0..^0)⟶𝑋𝐹 = ∅)
4542, 44syl6bb 278 . . . . . . . . . . 11 (𝑀 = 0 → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
4645adantr 468 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → (𝐹:(0..^𝑀)⟶𝑋𝐹 = ∅))
47 eqeq1 2810 . . . . . . . . . . . 12 (𝑀 = 𝑁 → (𝑀 = 0 ↔ 𝑁 = 0))
4847biimpac 466 . . . . . . . . . . 11 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → 𝑁 = 0)
49 oveq2 6882 . . . . . . . . . . . . 13 (𝑁 = 0 → (0..^𝑁) = (0..^0))
5049feq2d 6242 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑃:(0..^𝑁)⟶𝑌𝑃:(0..^0)⟶𝑌))
5129feq2i 6248 . . . . . . . . . . . . 13 (𝑃:(0..^0)⟶𝑌𝑃:∅⟶𝑌)
5251, 3bitri 266 . . . . . . . . . . . 12 (𝑃:(0..^0)⟶𝑌𝑃 = ∅)
5350, 52syl6bb 278 . . . . . . . . . . 11 (𝑁 = 0 → (𝑃:(0..^𝑁)⟶𝑌𝑃 = ∅))
5448, 53syl 17 . . . . . . . . . 10 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → (𝑃:(0..^𝑁)⟶𝑌𝑃 = ∅))
5546, 54anbi12d 618 . . . . . . . . 9 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) ↔ (𝐹 = ∅ ∧ 𝑃 = ∅)))
56 eqtr3 2827 . . . . . . . . 9 ((𝐹 = ∅ ∧ 𝑃 = ∅) → 𝐹 = 𝑃)
5755, 56syl6bi 244 . . . . . . . 8 ((𝑀 = 0 ∧ 𝑀 = 𝑁) → ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → 𝐹 = 𝑃))
5857com12 32 . . . . . . 7 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → ((𝑀 = 0 ∧ 𝑀 = 𝑁) → 𝐹 = 𝑃))
5958expd 402 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → (𝑀 = 0 → (𝑀 = 𝑁𝐹 = 𝑃)))
6059adantl 469 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝑀 = 0 → (𝑀 = 𝑁𝐹 = 𝑃)))
6160impcom 396 . . . 4 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝑀 = 𝑁𝐹 = 𝑃))
6241, 61impbid 203 . . 3 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃𝑀 = 𝑁))
63 ral0 4271 . . . . . 6 𝑖 ∈ ∅ (𝐹𝑖) = (𝑃𝑖)
6430raleqdv 3333 . . . . . 6 (𝑀 = 0 → (∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖) ↔ ∀𝑖 ∈ ∅ (𝐹𝑖) = (𝑃𝑖)))
6563, 64mpbiri 249 . . . . 5 (𝑀 = 0 → ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))
6665biantrud 523 . . . 4 (𝑀 = 0 → (𝑀 = 𝑁 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
6766adantr 468 . . 3 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝑀 = 𝑁 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
6862, 67bitrd 270 . 2 ((𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
69 ffn 6256 . . . . . . 7 (𝐹:(0..^𝑀)⟶𝑋𝐹 Fn (0..^𝑀))
7069, 4anim12i 602 . . . . . 6 ((𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
7170adantl 469 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
7271adantl 469 . . . 4 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)))
73 eqfnfv2 6534 . . . 4 ((𝐹 Fn (0..^𝑀) ∧ 𝑃 Fn (0..^𝑁)) → (𝐹 = 𝑃 ↔ ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
7472, 73syl 17 . . 3 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
75 df-ne 2979 . . . . . 6 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
76 elnnne0 11573 . . . . . . . 8 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0𝑀 ≠ 0))
77 0zd 11655 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 ∈ ℤ)
78 nnz 11665 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
79 nngt0 11335 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 0 < 𝑀)
8077, 78, 793jca 1151 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
8180adantr 468 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀))
82 fzoopth 41912 . . . . . . . . . . . . 13 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 0 < 𝑀) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
8381, 82syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((0..^𝑀) = (0..^𝑁) ↔ (0 = 0 ∧ 𝑀 = 𝑁)))
84 simpr 473 . . . . . . . . . . . 12 ((0 = 0 ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁)
8583, 84syl6bi 244 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((0..^𝑀) = (0..^𝑁) → 𝑀 = 𝑁))
8685anim1d 600 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) → (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
87 oveq2 6882 . . . . . . . . . . 11 (𝑀 = 𝑁 → (0..^𝑀) = (0..^𝑁))
8887anim1i 604 . . . . . . . . . 10 ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) → ((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))
8986, 88impbid1 216 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9089ex 399 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9176, 90sylbir 226 . . . . . . 7 ((𝑀 ∈ ℕ0𝑀 ≠ 0) → (𝑁 ∈ ℕ0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9291impancom 441 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 ≠ 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9375, 92syl5bir 234 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑀 = 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9493adantr 468 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (¬ 𝑀 = 0 → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)))))
9594impcom 396 . . 3 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (((0..^𝑀) = (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9674, 95bitrd 270 . 2 ((¬ 𝑀 = 0 ∧ ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌))) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
9768, 96pm2.61ian 837 1 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝐹:(0..^𝑀)⟶𝑋𝑃:(0..^𝑁)⟶𝑌)) → (𝐹 = 𝑃 ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝐹𝑖) = (𝑃𝑖))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wral 3096  c0 4116   class class class wbr 4844   Fn wfn 6096  wf 6097  cfv 6101  (class class class)co 6874  0cc0 10221   < clt 10359  cle 10360  cn 11305  0cn0 11559  cz 11643  ..^cfzo 12689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-1st 7398  df-2nd 7399  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-er 7979  df-en 8193  df-dom 8194  df-sdom 8195  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-n0 11560  df-z 11644  df-uz 11905  df-fz 12550  df-fzo 12690
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator