Proof of Theorem lmodfopnelem1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lmodfopne.v | . . . . 5
⊢ 𝑉 = (Base‘𝑊) | 
| 2 |  | lmodfopne.s | . . . . 5
⊢ 𝑆 = (Scalar‘𝑊) | 
| 3 |  | lmodfopne.k | . . . . 5
⊢ 𝐾 = (Base‘𝑆) | 
| 4 |  | lmodfopne.t | . . . . 5
⊢  · = (
·sf ‘𝑊) | 
| 5 | 1, 2, 3, 4 | lmodscaf 20883 | . . . 4
⊢ (𝑊 ∈ LMod → ·
:(𝐾 × 𝑉)⟶𝑉) | 
| 6 | 5 | ffnd 6736 | . . 3
⊢ (𝑊 ∈ LMod → · Fn
(𝐾 × 𝑉)) | 
| 7 |  | lmodfopne.a | . . . . 5
⊢  + =
(+𝑓‘𝑊) | 
| 8 | 1, 7 | plusffn 18663 | . . . 4
⊢  + Fn (𝑉 × 𝑉) | 
| 9 |  | fneq1 6658 | . . . . . . . . . . 11
⊢ ( + = · →
( + Fn
(𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉))) | 
| 10 |  | fndmu 6674 | . . . . . . . . . . . 12
⊢ (( · Fn
(𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉)) | 
| 11 | 10 | ex 412 | . . . . . . . . . . 11
⊢ ( · Fn
(𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))) | 
| 12 | 9, 11 | biimtrdi 253 | . . . . . . . . . 10
⊢ ( + = · →
( + Fn
(𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) | 
| 13 | 12 | com13 88 | . . . . . . . . 9
⊢ ( · Fn
(𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) | 
| 14 | 13 | impcom 407 | . . . . . . . 8
⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))) | 
| 15 | 1 | lmodbn0 20870 | . . . . . . . . . . 11
⊢ (𝑊 ∈ LMod → 𝑉 ≠ ∅) | 
| 16 |  | xp11 6194 | . . . . . . . . . . 11
⊢ ((𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) | 
| 17 | 15, 15, 16 | syl2anc 584 | . . . . . . . . . 10
⊢ (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) | 
| 18 | 17 | simprbda 498 | . . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾) | 
| 19 | 18 | expcom 413 | . . . . . . . 8
⊢ ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾)) | 
| 20 | 14, 19 | syl6 35 | . . . . . . 7
⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾))) | 
| 21 | 20 | com23 86 | . . . . . 6
⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾))) | 
| 22 | 21 | ex 412 | . . . . 5
⊢ ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)))) | 
| 23 | 22 | com23 86 | . . . 4
⊢ ( + Fn (𝑉 × 𝑉) → (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾)))) | 
| 24 | 8, 23 | ax-mp 5 | . . 3
⊢ (𝑊 ∈ LMod → ( · Fn
(𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾))) | 
| 25 | 6, 24 | mpd 15 | . 2
⊢ (𝑊 ∈ LMod → ( + = · →
𝑉 = 𝐾)) | 
| 26 | 25 | imp 406 | 1
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 𝑉 = 𝐾) |