Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodfopnelem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for lmodfopne 20076. (Contributed by AV, 2-Oct-2021.) |
Ref | Expression |
---|---|
lmodfopne.t | ⊢ · = ( ·sf ‘𝑊) |
lmodfopne.a | ⊢ + = (+𝑓‘𝑊) |
lmodfopne.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodfopne.s | ⊢ 𝑆 = (Scalar‘𝑊) |
lmodfopne.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
lmodfopnelem1 | ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodfopne.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lmodfopne.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑊) | |
3 | lmodfopne.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
4 | lmodfopne.t | . . . . 5 ⊢ · = ( ·sf ‘𝑊) | |
5 | 1, 2, 3, 4 | lmodscaf 20060 | . . . 4 ⊢ (𝑊 ∈ LMod → · :(𝐾 × 𝑉)⟶𝑉) |
6 | 5 | ffnd 6585 | . . 3 ⊢ (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉)) |
7 | lmodfopne.a | . . . . 5 ⊢ + = (+𝑓‘𝑊) | |
8 | 1, 7 | plusffn 18250 | . . . 4 ⊢ + Fn (𝑉 × 𝑉) |
9 | fneq1 6508 | . . . . . . . . . . 11 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉))) | |
10 | fndmu 6524 | . . . . . . . . . . . 12 ⊢ (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉)) | |
11 | 10 | ex 412 | . . . . . . . . . . 11 ⊢ ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
12 | 9, 11 | syl6bi 252 | . . . . . . . . . 10 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
13 | 12 | com13 88 | . . . . . . . . 9 ⊢ ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
14 | 13 | impcom 407 | . . . . . . . 8 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
15 | 1 | lmodbn0 20048 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑉 ≠ ∅) |
16 | xp11 6067 | . . . . . . . . . . 11 ⊢ ((𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) | |
17 | 15, 15, 16 | syl2anc 583 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
18 | 17 | simprbda 498 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾) |
19 | 18 | expcom 413 | . . . . . . . 8 ⊢ ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾)) |
20 | 14, 19 | syl6 35 | . . . . . . 7 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾))) |
21 | 20 | com23 86 | . . . . . 6 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾))) |
22 | 21 | ex 412 | . . . . 5 ⊢ ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)))) |
23 | 22 | com23 86 | . . . 4 ⊢ ( + Fn (𝑉 × 𝑉) → (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾)))) |
24 | 8, 23 | ax-mp 5 | . . 3 ⊢ (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾))) |
25 | 6, 24 | mpd 15 | . 2 ⊢ (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)) |
26 | 25 | imp 406 | 1 ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 × cxp 5578 Fn wfn 6413 ‘cfv 6418 Basecbs 16840 Scalarcsca 16891 +𝑓cplusf 18238 LModclmod 20038 ·sf cscaf 20039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-0g 17069 df-plusf 18240 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-lmod 20040 df-scaf 20041 |
This theorem is referenced by: lmodfopnelem2 20075 |
Copyright terms: Public domain | W3C validator |