Proof of Theorem lmodfopnelem1
| Step | Hyp | Ref
| Expression |
| 1 | | lmodfopne.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
| 2 | | lmodfopne.s |
. . . . 5
⊢ 𝑆 = (Scalar‘𝑊) |
| 3 | | lmodfopne.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑆) |
| 4 | | lmodfopne.t |
. . . . 5
⊢ · = (
·sf ‘𝑊) |
| 5 | 1, 2, 3, 4 | lmodscaf 20846 |
. . . 4
⊢ (𝑊 ∈ LMod → ·
:(𝐾 × 𝑉)⟶𝑉) |
| 6 | 5 | ffnd 6712 |
. . 3
⊢ (𝑊 ∈ LMod → · Fn
(𝐾 × 𝑉)) |
| 7 | | lmodfopne.a |
. . . . 5
⊢ + =
(+𝑓‘𝑊) |
| 8 | 1, 7 | plusffn 18632 |
. . . 4
⊢ + Fn (𝑉 × 𝑉) |
| 9 | | fneq1 6634 |
. . . . . . . . . . 11
⊢ ( + = · →
( + Fn
(𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉))) |
| 10 | | fndmu 6650 |
. . . . . . . . . . . 12
⊢ (( · Fn
(𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉)) |
| 11 | 10 | ex 412 |
. . . . . . . . . . 11
⊢ ( · Fn
(𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
| 12 | 9, 11 | biimtrdi 253 |
. . . . . . . . . 10
⊢ ( + = · →
( + Fn
(𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
| 13 | 12 | com13 88 |
. . . . . . . . 9
⊢ ( · Fn
(𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
| 14 | 13 | impcom 407 |
. . . . . . . 8
⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
| 15 | 1 | lmodbn0 20833 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ LMod → 𝑉 ≠ ∅) |
| 16 | | xp11 6169 |
. . . . . . . . . . 11
⊢ ((𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
| 17 | 15, 15, 16 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
| 18 | 17 | simprbda 498 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾) |
| 19 | 18 | expcom 413 |
. . . . . . . 8
⊢ ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾)) |
| 20 | 14, 19 | syl6 35 |
. . . . . . 7
⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾))) |
| 21 | 20 | com23 86 |
. . . . . 6
⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾))) |
| 22 | 21 | ex 412 |
. . . . 5
⊢ ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)))) |
| 23 | 22 | com23 86 |
. . . 4
⊢ ( + Fn (𝑉 × 𝑉) → (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾)))) |
| 24 | 8, 23 | ax-mp 5 |
. . 3
⊢ (𝑊 ∈ LMod → ( · Fn
(𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾))) |
| 25 | 6, 24 | mpd 15 |
. 2
⊢ (𝑊 ∈ LMod → ( + = · →
𝑉 = 𝐾)) |
| 26 | 25 | imp 406 |
1
⊢ ((𝑊 ∈ LMod ∧ + = · )
→ 𝑉 = 𝐾) |