MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfopnelem1 Structured version   Visualization version   GIF version

Theorem lmodfopnelem1 20159
Description: Lemma 1 for lmodfopne 20161. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
lmodfopnelem1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)

Proof of Theorem lmodfopnelem1
StepHypRef Expression
1 lmodfopne.v . . . . 5 𝑉 = (Base‘𝑊)
2 lmodfopne.s . . . . 5 𝑆 = (Scalar‘𝑊)
3 lmodfopne.k . . . . 5 𝐾 = (Base‘𝑆)
4 lmodfopne.t . . . . 5 · = ( ·sf𝑊)
51, 2, 3, 4lmodscaf 20145 . . . 4 (𝑊 ∈ LMod → · :(𝐾 × 𝑉)⟶𝑉)
65ffnd 6601 . . 3 (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉))
7 lmodfopne.a . . . . 5 + = (+𝑓𝑊)
81, 7plusffn 18335 . . . 4 + Fn (𝑉 × 𝑉)
9 fneq1 6524 . . . . . . . . . . 11 ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉)))
10 fndmu 6540 . . . . . . . . . . . 12 (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉))
1110ex 413 . . . . . . . . . . 11 ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
129, 11syl6bi 252 . . . . . . . . . 10 ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1312com13 88 . . . . . . . . 9 ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1413impcom 408 . . . . . . . 8 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
151lmodbn0 20133 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑉 ≠ ∅)
16 xp11 6078 . . . . . . . . . . 11 ((𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
1715, 15, 16syl2anc 584 . . . . . . . . . 10 (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
1817simprbda 499 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾)
1918expcom 414 . . . . . . . 8 ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾))
2014, 19syl6 35 . . . . . . 7 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾)))
2120com23 86 . . . . . 6 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾)))
2221ex 413 . . . . 5 ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))))
2322com23 86 . . . 4 ( + Fn (𝑉 × 𝑉) → (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾))))
248, 23ax-mp 5 . . 3 (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾)))
256, 24mpd 15 . 2 (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))
2625imp 407 1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  c0 4256   × cxp 5587   Fn wfn 6428  cfv 6433  Basecbs 16912  Scalarcsca 16965  +𝑓cplusf 18323  LModclmod 20123   ·sf cscaf 20124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-0g 17152  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-lmod 20125  df-scaf 20126
This theorem is referenced by:  lmodfopnelem2  20160
  Copyright terms: Public domain W3C validator