Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodfopnelem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for lmodfopne 20161. (Contributed by AV, 2-Oct-2021.) |
Ref | Expression |
---|---|
lmodfopne.t | ⊢ · = ( ·sf ‘𝑊) |
lmodfopne.a | ⊢ + = (+𝑓‘𝑊) |
lmodfopne.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodfopne.s | ⊢ 𝑆 = (Scalar‘𝑊) |
lmodfopne.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
lmodfopnelem1 | ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodfopne.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lmodfopne.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑊) | |
3 | lmodfopne.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
4 | lmodfopne.t | . . . . 5 ⊢ · = ( ·sf ‘𝑊) | |
5 | 1, 2, 3, 4 | lmodscaf 20145 | . . . 4 ⊢ (𝑊 ∈ LMod → · :(𝐾 × 𝑉)⟶𝑉) |
6 | 5 | ffnd 6601 | . . 3 ⊢ (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉)) |
7 | lmodfopne.a | . . . . 5 ⊢ + = (+𝑓‘𝑊) | |
8 | 1, 7 | plusffn 18335 | . . . 4 ⊢ + Fn (𝑉 × 𝑉) |
9 | fneq1 6524 | . . . . . . . . . . 11 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉))) | |
10 | fndmu 6540 | . . . . . . . . . . . 12 ⊢ (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉)) | |
11 | 10 | ex 413 | . . . . . . . . . . 11 ⊢ ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
12 | 9, 11 | syl6bi 252 | . . . . . . . . . 10 ⊢ ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
13 | 12 | com13 88 | . . . . . . . . 9 ⊢ ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))) |
14 | 13 | impcom 408 | . . . . . . . 8 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))) |
15 | 1 | lmodbn0 20133 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LMod → 𝑉 ≠ ∅) |
16 | xp11 6078 | . . . . . . . . . . 11 ⊢ ((𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) | |
17 | 15, 15, 16 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾 ∧ 𝑉 = 𝑉))) |
18 | 17 | simprbda 499 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾) |
19 | 18 | expcom 414 | . . . . . . . 8 ⊢ ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾)) |
20 | 14, 19 | syl6 35 | . . . . . . 7 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾))) |
21 | 20 | com23 86 | . . . . . 6 ⊢ (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾))) |
22 | 21 | ex 413 | . . . . 5 ⊢ ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)))) |
23 | 22 | com23 86 | . . . 4 ⊢ ( + Fn (𝑉 × 𝑉) → (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾)))) |
24 | 8, 23 | ax-mp 5 | . . 3 ⊢ (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = · → 𝑉 = 𝐾))) |
25 | 6, 24 | mpd 15 | . 2 ⊢ (𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾)) |
26 | 25 | imp 407 | 1 ⊢ ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 × cxp 5587 Fn wfn 6428 ‘cfv 6433 Basecbs 16912 Scalarcsca 16965 +𝑓cplusf 18323 LModclmod 20123 ·sf cscaf 20124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-0g 17152 df-plusf 18325 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-lmod 20125 df-scaf 20126 |
This theorem is referenced by: lmodfopnelem2 20160 |
Copyright terms: Public domain | W3C validator |