MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfopnelem1 Structured version   Visualization version   GIF version

Theorem lmodfopnelem1 20897
Description: Lemma 1 for lmodfopne 20899. (Contributed by AV, 2-Oct-2021.)
Hypotheses
Ref Expression
lmodfopne.t · = ( ·sf𝑊)
lmodfopne.a + = (+𝑓𝑊)
lmodfopne.v 𝑉 = (Base‘𝑊)
lmodfopne.s 𝑆 = (Scalar‘𝑊)
lmodfopne.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
lmodfopnelem1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)

Proof of Theorem lmodfopnelem1
StepHypRef Expression
1 lmodfopne.v . . . . 5 𝑉 = (Base‘𝑊)
2 lmodfopne.s . . . . 5 𝑆 = (Scalar‘𝑊)
3 lmodfopne.k . . . . 5 𝐾 = (Base‘𝑆)
4 lmodfopne.t . . . . 5 · = ( ·sf𝑊)
51, 2, 3, 4lmodscaf 20883 . . . 4 (𝑊 ∈ LMod → · :(𝐾 × 𝑉)⟶𝑉)
65ffnd 6736 . . 3 (𝑊 ∈ LMod → · Fn (𝐾 × 𝑉))
7 lmodfopne.a . . . . 5 + = (+𝑓𝑊)
81, 7plusffn 18663 . . . 4 + Fn (𝑉 × 𝑉)
9 fneq1 6658 . . . . . . . . . . 11 ( + = · → ( + Fn (𝑉 × 𝑉) ↔ · Fn (𝑉 × 𝑉)))
10 fndmu 6674 . . . . . . . . . . . 12 (( · Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑉 × 𝑉) = (𝐾 × 𝑉))
1110ex 412 . . . . . . . . . . 11 ( · Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
129, 11biimtrdi 253 . . . . . . . . . 10 ( + = · → ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1312com13 88 . . . . . . . . 9 ( · Fn (𝐾 × 𝑉) → ( + Fn (𝑉 × 𝑉) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉))))
1413impcom 407 . . . . . . . 8 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑉 × 𝑉) = (𝐾 × 𝑉)))
151lmodbn0 20870 . . . . . . . . . . 11 (𝑊 ∈ LMod → 𝑉 ≠ ∅)
16 xp11 6194 . . . . . . . . . . 11 ((𝑉 ≠ ∅ ∧ 𝑉 ≠ ∅) → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
1715, 15, 16syl2anc 584 . . . . . . . . . 10 (𝑊 ∈ LMod → ((𝑉 × 𝑉) = (𝐾 × 𝑉) ↔ (𝑉 = 𝐾𝑉 = 𝑉)))
1817simprbda 498 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑉 × 𝑉) = (𝐾 × 𝑉)) → 𝑉 = 𝐾)
1918expcom 413 . . . . . . . 8 ((𝑉 × 𝑉) = (𝐾 × 𝑉) → (𝑊 ∈ LMod → 𝑉 = 𝐾))
2014, 19syl6 35 . . . . . . 7 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → ( + = · → (𝑊 ∈ LMod → 𝑉 = 𝐾)))
2120com23 86 . . . . . 6 (( + Fn (𝑉 × 𝑉) ∧ · Fn (𝐾 × 𝑉)) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾)))
2221ex 412 . . . . 5 ( + Fn (𝑉 × 𝑉) → ( · Fn (𝐾 × 𝑉) → (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))))
2322com23 86 . . . 4 ( + Fn (𝑉 × 𝑉) → (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾))))
248, 23ax-mp 5 . . 3 (𝑊 ∈ LMod → ( · Fn (𝐾 × 𝑉) → ( + = ·𝑉 = 𝐾)))
256, 24mpd 15 . 2 (𝑊 ∈ LMod → ( + = ·𝑉 = 𝐾))
2625imp 406 1 ((𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  c0 4332   × cxp 5682   Fn wfn 6555  cfv 6560  Basecbs 17248  Scalarcsca 17301  +𝑓cplusf 18651  LModclmod 20859   ·sf cscaf 20860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-0g 17487  df-plusf 18653  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-lmod 20861  df-scaf 20862
This theorem is referenced by:  lmodfopnelem2  20898
  Copyright terms: Public domain W3C validator