MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporn Structured version   Visualization version   GIF version

Theorem grporn 30553
Description: The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grprn.1 𝐺 ∈ GrpOp
grprn.2 dom 𝐺 = (𝑋 × 𝑋)
Assertion
Ref Expression
grporn 𝑋 = ran 𝐺

Proof of Theorem grporn
StepHypRef Expression
1 grprn.1 . . . 4 𝐺 ∈ GrpOp
2 eqid 2740 . . . . 5 ran 𝐺 = ran 𝐺
32grpofo 30531 . . . 4 (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺)
4 fofun 6835 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → Fun 𝐺)
51, 3, 4mp2b 10 . . 3 Fun 𝐺
6 grprn.2 . . 3 dom 𝐺 = (𝑋 × 𝑋)
7 df-fn 6576 . . 3 (𝐺 Fn (𝑋 × 𝑋) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝑋 × 𝑋)))
85, 6, 7mpbir2an 710 . 2 𝐺 Fn (𝑋 × 𝑋)
9 fofn 6836 . . 3 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺𝐺 Fn (ran 𝐺 × ran 𝐺))
101, 3, 9mp2b 10 . 2 𝐺 Fn (ran 𝐺 × ran 𝐺)
11 fndmu 6686 . . 3 ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺))
12 xpid11 5957 . . 3 ((𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺) ↔ 𝑋 = ran 𝐺)
1311, 12sylib 218 . 2 ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → 𝑋 = ran 𝐺)
148, 10, 13mp2an 691 1 𝑋 = ran 𝐺
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108   × cxp 5698  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  ontowfo 6571  GrpOpcgr 30521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-grpo 30525
This theorem is referenced by:  isabloi  30583  isvciOLD  30612  cnidOLD  30614  cnnv  30709  cnnvba  30711  cncph  30851  hilid  31193  hhnv  31197  hhba  31199  hhph  31210  hhssnv  31296
  Copyright terms: Public domain W3C validator