MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporn Structured version   Visualization version   GIF version

Theorem grporn 29774
Description: The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grprn.1 𝐺 ∈ GrpOp
grprn.2 dom 𝐺 = (𝑋 Γ— 𝑋)
Assertion
Ref Expression
grporn 𝑋 = ran 𝐺

Proof of Theorem grporn
StepHypRef Expression
1 grprn.1 . . . 4 𝐺 ∈ GrpOp
2 eqid 2733 . . . . 5 ran 𝐺 = ran 𝐺
32grpofo 29752 . . . 4 (𝐺 ∈ GrpOp β†’ 𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺)
4 fofun 6807 . . . 4 (𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺 β†’ Fun 𝐺)
51, 3, 4mp2b 10 . . 3 Fun 𝐺
6 grprn.2 . . 3 dom 𝐺 = (𝑋 Γ— 𝑋)
7 df-fn 6547 . . 3 (𝐺 Fn (𝑋 Γ— 𝑋) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝑋 Γ— 𝑋)))
85, 6, 7mpbir2an 710 . 2 𝐺 Fn (𝑋 Γ— 𝑋)
9 fofn 6808 . . 3 (𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺 β†’ 𝐺 Fn (ran 𝐺 Γ— ran 𝐺))
101, 3, 9mp2b 10 . 2 𝐺 Fn (ran 𝐺 Γ— ran 𝐺)
11 fndmu 6657 . . 3 ((𝐺 Fn (𝑋 Γ— 𝑋) ∧ 𝐺 Fn (ran 𝐺 Γ— ran 𝐺)) β†’ (𝑋 Γ— 𝑋) = (ran 𝐺 Γ— ran 𝐺))
12 xpid11 5932 . . 3 ((𝑋 Γ— 𝑋) = (ran 𝐺 Γ— ran 𝐺) ↔ 𝑋 = ran 𝐺)
1311, 12sylib 217 . 2 ((𝐺 Fn (𝑋 Γ— 𝑋) ∧ 𝐺 Fn (ran 𝐺 Γ— ran 𝐺)) β†’ 𝑋 = ran 𝐺)
148, 10, 13mp2an 691 1 𝑋 = ran 𝐺
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 397   = wceq 1542   ∈ wcel 2107   Γ— cxp 5675  dom cdm 5677  ran crn 5678  Fun wfun 6538   Fn wfn 6539  β€“ontoβ†’wfo 6542  GrpOpcgr 29742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552  df-ov 7412  df-grpo 29746
This theorem is referenced by:  isabloi  29804  isvciOLD  29833  cnidOLD  29835  cnnv  29930  cnnvba  29932  cncph  30072  hilid  30414  hhnv  30418  hhba  30420  hhph  30431  hhssnv  30517
  Copyright terms: Public domain W3C validator