MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporn Structured version   Visualization version   GIF version

Theorem grporn 30450
Description: The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grprn.1 𝐺 ∈ GrpOp
grprn.2 dom 𝐺 = (𝑋 × 𝑋)
Assertion
Ref Expression
grporn 𝑋 = ran 𝐺

Proof of Theorem grporn
StepHypRef Expression
1 grprn.1 . . . 4 𝐺 ∈ GrpOp
2 eqid 2729 . . . . 5 ran 𝐺 = ran 𝐺
32grpofo 30428 . . . 4 (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺)
4 fofun 6773 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → Fun 𝐺)
51, 3, 4mp2b 10 . . 3 Fun 𝐺
6 grprn.2 . . 3 dom 𝐺 = (𝑋 × 𝑋)
7 df-fn 6514 . . 3 (𝐺 Fn (𝑋 × 𝑋) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝑋 × 𝑋)))
85, 6, 7mpbir2an 711 . 2 𝐺 Fn (𝑋 × 𝑋)
9 fofn 6774 . . 3 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺𝐺 Fn (ran 𝐺 × ran 𝐺))
101, 3, 9mp2b 10 . 2 𝐺 Fn (ran 𝐺 × ran 𝐺)
11 fndmu 6625 . . 3 ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺))
12 xpid11 5896 . . 3 ((𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺) ↔ 𝑋 = ran 𝐺)
1311, 12sylib 218 . 2 ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → 𝑋 = ran 𝐺)
148, 10, 13mp2an 692 1 𝑋 = ran 𝐺
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109   × cxp 5636  dom cdm 5638  ran crn 5639  Fun wfun 6505   Fn wfn 6506  ontowfo 6509  GrpOpcgr 30418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-ov 7390  df-grpo 30422
This theorem is referenced by:  isabloi  30480  isvciOLD  30509  cnidOLD  30511  cnnv  30606  cnnvba  30608  cncph  30748  hilid  31090  hhnv  31094  hhba  31096  hhph  31107  hhssnv  31193
  Copyright terms: Public domain W3C validator