| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grporn | Structured version Visualization version GIF version | ||
| Description: The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grprn.1 | ⊢ 𝐺 ∈ GrpOp |
| grprn.2 | ⊢ dom 𝐺 = (𝑋 × 𝑋) |
| Ref | Expression |
|---|---|
| grporn | ⊢ 𝑋 = ran 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprn.1 | . . . 4 ⊢ 𝐺 ∈ GrpOp | |
| 2 | eqid 2730 | . . . . 5 ⊢ ran 𝐺 = ran 𝐺 | |
| 3 | 2 | grpofo 30469 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
| 4 | fofun 6732 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → Fun 𝐺) | |
| 5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ Fun 𝐺 |
| 6 | grprn.2 | . . 3 ⊢ dom 𝐺 = (𝑋 × 𝑋) | |
| 7 | df-fn 6480 | . . 3 ⊢ (𝐺 Fn (𝑋 × 𝑋) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝑋 × 𝑋))) | |
| 8 | 5, 6, 7 | mpbir2an 711 | . 2 ⊢ 𝐺 Fn (𝑋 × 𝑋) |
| 9 | fofn 6733 | . . 3 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → 𝐺 Fn (ran 𝐺 × ran 𝐺)) | |
| 10 | 1, 3, 9 | mp2b 10 | . 2 ⊢ 𝐺 Fn (ran 𝐺 × ran 𝐺) |
| 11 | fndmu 6584 | . . 3 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺)) | |
| 12 | xpid11 5869 | . . 3 ⊢ ((𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺) ↔ 𝑋 = ran 𝐺) | |
| 13 | 11, 12 | sylib 218 | . 2 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → 𝑋 = ran 𝐺) |
| 14 | 8, 10, 13 | mp2an 692 | 1 ⊢ 𝑋 = ran 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2110 × cxp 5612 dom cdm 5614 ran crn 5615 Fun wfun 6471 Fn wfn 6472 –onto→wfo 6475 GrpOpcgr 30459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fo 6483 df-fv 6485 df-ov 7344 df-grpo 30463 |
| This theorem is referenced by: isabloi 30521 isvciOLD 30550 cnidOLD 30552 cnnv 30647 cnnvba 30649 cncph 30789 hilid 31131 hhnv 31135 hhba 31137 hhph 31148 hhssnv 31234 |
| Copyright terms: Public domain | W3C validator |