![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grporn | Structured version Visualization version GIF version |
Description: The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grprn.1 | ⊢ 𝐺 ∈ GrpOp |
grprn.2 | ⊢ dom 𝐺 = (𝑋 × 𝑋) |
Ref | Expression |
---|---|
grporn | ⊢ 𝑋 = ran 𝐺 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grprn.1 | . . . 4 ⊢ 𝐺 ∈ GrpOp | |
2 | eqid 2772 | . . . . 5 ⊢ ran 𝐺 = ran 𝐺 | |
3 | 2 | grpofo 28065 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
4 | fofun 6417 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → Fun 𝐺) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ Fun 𝐺 |
6 | grprn.2 | . . 3 ⊢ dom 𝐺 = (𝑋 × 𝑋) | |
7 | df-fn 6188 | . . 3 ⊢ (𝐺 Fn (𝑋 × 𝑋) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝑋 × 𝑋))) | |
8 | 5, 6, 7 | mpbir2an 698 | . 2 ⊢ 𝐺 Fn (𝑋 × 𝑋) |
9 | fofn 6418 | . . 3 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → 𝐺 Fn (ran 𝐺 × ran 𝐺)) | |
10 | 1, 3, 9 | mp2b 10 | . 2 ⊢ 𝐺 Fn (ran 𝐺 × ran 𝐺) |
11 | fndmu 6288 | . . 3 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺)) | |
12 | xpid11 5642 | . . 3 ⊢ ((𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺) ↔ 𝑋 = ran 𝐺) | |
13 | 11, 12 | sylib 210 | . 2 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → 𝑋 = ran 𝐺) |
14 | 8, 10, 13 | mp2an 679 | 1 ⊢ 𝑋 = ran 𝐺 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 = wceq 1507 ∈ wcel 2050 × cxp 5401 dom cdm 5403 ran crn 5404 Fun wfun 6179 Fn wfn 6180 –onto→wfo 6183 GrpOpcgr 28055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5056 ax-nul 5063 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-fo 6191 df-fv 6193 df-ov 6977 df-grpo 28059 |
This theorem is referenced by: isabloi 28117 isvciOLD 28146 cnidOLD 28148 cnnv 28243 cnnvba 28245 cncph 28385 hilid 28729 hhnv 28733 hhba 28735 hhph 28746 hhssnv 28832 |
Copyright terms: Public domain | W3C validator |