| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grporn | Structured version Visualization version GIF version | ||
| Description: The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grprn.1 | ⊢ 𝐺 ∈ GrpOp |
| grprn.2 | ⊢ dom 𝐺 = (𝑋 × 𝑋) |
| Ref | Expression |
|---|---|
| grporn | ⊢ 𝑋 = ran 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprn.1 | . . . 4 ⊢ 𝐺 ∈ GrpOp | |
| 2 | eqid 2730 | . . . . 5 ⊢ ran 𝐺 = ran 𝐺 | |
| 3 | 2 | grpofo 30435 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
| 4 | fofun 6776 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → Fun 𝐺) | |
| 5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ Fun 𝐺 |
| 6 | grprn.2 | . . 3 ⊢ dom 𝐺 = (𝑋 × 𝑋) | |
| 7 | df-fn 6517 | . . 3 ⊢ (𝐺 Fn (𝑋 × 𝑋) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝑋 × 𝑋))) | |
| 8 | 5, 6, 7 | mpbir2an 711 | . 2 ⊢ 𝐺 Fn (𝑋 × 𝑋) |
| 9 | fofn 6777 | . . 3 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → 𝐺 Fn (ran 𝐺 × ran 𝐺)) | |
| 10 | 1, 3, 9 | mp2b 10 | . 2 ⊢ 𝐺 Fn (ran 𝐺 × ran 𝐺) |
| 11 | fndmu 6628 | . . 3 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺)) | |
| 12 | xpid11 5899 | . . 3 ⊢ ((𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺) ↔ 𝑋 = ran 𝐺) | |
| 13 | 11, 12 | sylib 218 | . 2 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → 𝑋 = ran 𝐺) |
| 14 | 8, 10, 13 | mp2an 692 | 1 ⊢ 𝑋 = ran 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5639 dom cdm 5641 ran crn 5642 Fun wfun 6508 Fn wfn 6509 –onto→wfo 6512 GrpOpcgr 30425 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-ov 7393 df-grpo 30429 |
| This theorem is referenced by: isabloi 30487 isvciOLD 30516 cnidOLD 30518 cnnv 30613 cnnvba 30615 cncph 30755 hilid 31097 hhnv 31101 hhba 31103 hhph 31114 hhssnv 31200 |
| Copyright terms: Public domain | W3C validator |