| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grporn | Structured version Visualization version GIF version | ||
| Description: The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grprn.1 | ⊢ 𝐺 ∈ GrpOp |
| grprn.2 | ⊢ dom 𝐺 = (𝑋 × 𝑋) |
| Ref | Expression |
|---|---|
| grporn | ⊢ 𝑋 = ran 𝐺 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grprn.1 | . . . 4 ⊢ 𝐺 ∈ GrpOp | |
| 2 | eqid 2737 | . . . . 5 ⊢ ran 𝐺 = ran 𝐺 | |
| 3 | 2 | grpofo 30518 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
| 4 | fofun 6821 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → Fun 𝐺) | |
| 5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ Fun 𝐺 |
| 6 | grprn.2 | . . 3 ⊢ dom 𝐺 = (𝑋 × 𝑋) | |
| 7 | df-fn 6564 | . . 3 ⊢ (𝐺 Fn (𝑋 × 𝑋) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝑋 × 𝑋))) | |
| 8 | 5, 6, 7 | mpbir2an 711 | . 2 ⊢ 𝐺 Fn (𝑋 × 𝑋) |
| 9 | fofn 6822 | . . 3 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → 𝐺 Fn (ran 𝐺 × ran 𝐺)) | |
| 10 | 1, 3, 9 | mp2b 10 | . 2 ⊢ 𝐺 Fn (ran 𝐺 × ran 𝐺) |
| 11 | fndmu 6675 | . . 3 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺)) | |
| 12 | xpid11 5943 | . . 3 ⊢ ((𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺) ↔ 𝑋 = ran 𝐺) | |
| 13 | 11, 12 | sylib 218 | . 2 ⊢ ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → 𝑋 = ran 𝐺) |
| 14 | 8, 10, 13 | mp2an 692 | 1 ⊢ 𝑋 = ran 𝐺 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 × cxp 5683 dom cdm 5685 ran crn 5686 Fun wfun 6555 Fn wfn 6556 –onto→wfo 6559 GrpOpcgr 30508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 df-ov 7434 df-grpo 30512 |
| This theorem is referenced by: isabloi 30570 isvciOLD 30599 cnidOLD 30601 cnnv 30696 cnnvba 30698 cncph 30838 hilid 31180 hhnv 31184 hhba 31186 hhph 31197 hhssnv 31283 |
| Copyright terms: Public domain | W3C validator |