MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporn Structured version   Visualization version   GIF version

Theorem grporn 30029
Description: The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grprn.1 𝐺 ∈ GrpOp
grprn.2 dom 𝐺 = (𝑋 Γ— 𝑋)
Assertion
Ref Expression
grporn 𝑋 = ran 𝐺

Proof of Theorem grporn
StepHypRef Expression
1 grprn.1 . . . 4 𝐺 ∈ GrpOp
2 eqid 2732 . . . . 5 ran 𝐺 = ran 𝐺
32grpofo 30007 . . . 4 (𝐺 ∈ GrpOp β†’ 𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺)
4 fofun 6806 . . . 4 (𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺 β†’ Fun 𝐺)
51, 3, 4mp2b 10 . . 3 Fun 𝐺
6 grprn.2 . . 3 dom 𝐺 = (𝑋 Γ— 𝑋)
7 df-fn 6546 . . 3 (𝐺 Fn (𝑋 Γ— 𝑋) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝑋 Γ— 𝑋)))
85, 6, 7mpbir2an 709 . 2 𝐺 Fn (𝑋 Γ— 𝑋)
9 fofn 6807 . . 3 (𝐺:(ran 𝐺 Γ— ran 𝐺)–ontoβ†’ran 𝐺 β†’ 𝐺 Fn (ran 𝐺 Γ— ran 𝐺))
101, 3, 9mp2b 10 . 2 𝐺 Fn (ran 𝐺 Γ— ran 𝐺)
11 fndmu 6656 . . 3 ((𝐺 Fn (𝑋 Γ— 𝑋) ∧ 𝐺 Fn (ran 𝐺 Γ— ran 𝐺)) β†’ (𝑋 Γ— 𝑋) = (ran 𝐺 Γ— ran 𝐺))
12 xpid11 5931 . . 3 ((𝑋 Γ— 𝑋) = (ran 𝐺 Γ— ran 𝐺) ↔ 𝑋 = ran 𝐺)
1311, 12sylib 217 . 2 ((𝐺 Fn (𝑋 Γ— 𝑋) ∧ 𝐺 Fn (ran 𝐺 Γ— ran 𝐺)) β†’ 𝑋 = ran 𝐺)
148, 10, 13mp2an 690 1 𝑋 = ran 𝐺
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 396   = wceq 1541   ∈ wcel 2106   Γ— cxp 5674  dom cdm 5676  ran crn 5677  Fun wfun 6537   Fn wfn 6538  β€“ontoβ†’wfo 6541  GrpOpcgr 29997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-ov 7414  df-grpo 30001
This theorem is referenced by:  isabloi  30059  isvciOLD  30088  cnidOLD  30090  cnnv  30185  cnnvba  30187  cncph  30327  hilid  30669  hhnv  30673  hhba  30675  hhph  30686  hhssnv  30772
  Copyright terms: Public domain W3C validator