MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporn Structured version   Visualization version   GIF version

Theorem grporn 30491
Description: The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grprn.1 𝐺 ∈ GrpOp
grprn.2 dom 𝐺 = (𝑋 × 𝑋)
Assertion
Ref Expression
grporn 𝑋 = ran 𝐺

Proof of Theorem grporn
StepHypRef Expression
1 grprn.1 . . . 4 𝐺 ∈ GrpOp
2 eqid 2730 . . . . 5 ran 𝐺 = ran 𝐺
32grpofo 30469 . . . 4 (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺)
4 fofun 6732 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → Fun 𝐺)
51, 3, 4mp2b 10 . . 3 Fun 𝐺
6 grprn.2 . . 3 dom 𝐺 = (𝑋 × 𝑋)
7 df-fn 6480 . . 3 (𝐺 Fn (𝑋 × 𝑋) ↔ (Fun 𝐺 ∧ dom 𝐺 = (𝑋 × 𝑋)))
85, 6, 7mpbir2an 711 . 2 𝐺 Fn (𝑋 × 𝑋)
9 fofn 6733 . . 3 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺𝐺 Fn (ran 𝐺 × ran 𝐺))
101, 3, 9mp2b 10 . 2 𝐺 Fn (ran 𝐺 × ran 𝐺)
11 fndmu 6584 . . 3 ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → (𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺))
12 xpid11 5869 . . 3 ((𝑋 × 𝑋) = (ran 𝐺 × ran 𝐺) ↔ 𝑋 = ran 𝐺)
1311, 12sylib 218 . 2 ((𝐺 Fn (𝑋 × 𝑋) ∧ 𝐺 Fn (ran 𝐺 × ran 𝐺)) → 𝑋 = ran 𝐺)
148, 10, 13mp2an 692 1 𝑋 = ran 𝐺
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2110   × cxp 5612  dom cdm 5614  ran crn 5615  Fun wfun 6471   Fn wfn 6472  ontowfo 6475  GrpOpcgr 30459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fo 6483  df-fv 6485  df-ov 7344  df-grpo 30463
This theorem is referenced by:  isabloi  30521  isvciOLD  30550  cnidOLD  30552  cnnv  30647  cnnvba  30649  cncph  30789  hilid  31131  hhnv  31135  hhba  31137  hhph  31148  hhssnv  31234
  Copyright terms: Public domain W3C validator