MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fodmrnu Structured version   Visualization version   GIF version

Theorem fodmrnu 6692
Description: An onto function has unique domain and range. (Contributed by NM, 5-Nov-2006.)
Assertion
Ref Expression
fodmrnu ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem fodmrnu
StepHypRef Expression
1 fofn 6686 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 fofn 6686 . . 3 (𝐹:𝐶onto𝐷𝐹 Fn 𝐶)
3 fndmu 6536 . . 3 ((𝐹 Fn 𝐴𝐹 Fn 𝐶) → 𝐴 = 𝐶)
41, 2, 3syl2an 595 . 2 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → 𝐴 = 𝐶)
5 forn 6687 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
6 forn 6687 . . 3 (𝐹:𝐶onto𝐷 → ran 𝐹 = 𝐷)
75, 6sylan9req 2800 . 2 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → 𝐵 = 𝐷)
84, 7jca 511 1 ((𝐹:𝐴onto𝐵𝐹:𝐶onto𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  ran crn 5589   Fn wfn 6425  ontowfo 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-fn 6433  df-f 6434  df-fo 6436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator