| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hon0 | Structured version Visualization version GIF version | ||
| Description: A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hon0 | ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 31004 | . . 3 ⊢ 0ℎ ∈ ℋ | |
| 2 | 1 | n0ii 4292 | . 2 ⊢ ¬ ℋ = ∅ |
| 3 | fn0 6620 | . . 3 ⊢ (𝑇 Fn ∅ ↔ 𝑇 = ∅) | |
| 4 | ffn 6659 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
| 5 | fndmu 6596 | . . . . 5 ⊢ ((𝑇 Fn ℋ ∧ 𝑇 Fn ∅) → ℋ = ∅) | |
| 6 | 5 | ex 412 | . . . 4 ⊢ (𝑇 Fn ℋ → (𝑇 Fn ∅ → ℋ = ∅)) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 Fn ∅ → ℋ = ∅)) |
| 8 | 3, 7 | biimtrrid 243 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 = ∅ → ℋ = ∅)) |
| 9 | 2, 8 | mtoi 199 | 1 ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∅c0 4282 Fn wfn 6484 ⟶wf 6485 ℋchba 30920 0ℎc0v 30925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-hv0cl 31004 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-fun 6491 df-fn 6492 df-f 6493 |
| This theorem is referenced by: hmdmadj 31941 |
| Copyright terms: Public domain | W3C validator |