| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hon0 | Structured version Visualization version GIF version | ||
| Description: A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hon0 | ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30939 | . . 3 ⊢ 0ℎ ∈ ℋ | |
| 2 | 1 | n0ii 4309 | . 2 ⊢ ¬ ℋ = ∅ |
| 3 | fn0 6652 | . . 3 ⊢ (𝑇 Fn ∅ ↔ 𝑇 = ∅) | |
| 4 | ffn 6691 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
| 5 | fndmu 6628 | . . . . 5 ⊢ ((𝑇 Fn ℋ ∧ 𝑇 Fn ∅) → ℋ = ∅) | |
| 6 | 5 | ex 412 | . . . 4 ⊢ (𝑇 Fn ℋ → (𝑇 Fn ∅ → ℋ = ∅)) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 Fn ∅ → ℋ = ∅)) |
| 8 | 3, 7 | biimtrrid 243 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 = ∅ → ℋ = ∅)) |
| 9 | 2, 8 | mtoi 199 | 1 ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∅c0 4299 Fn wfn 6509 ⟶wf 6510 ℋchba 30855 0ℎc0v 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hv0cl 30939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: hmdmadj 31876 |
| Copyright terms: Public domain | W3C validator |