| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hon0 | Structured version Visualization version GIF version | ||
| Description: A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hon0 | ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl 30984 | . . 3 ⊢ 0ℎ ∈ ℋ | |
| 2 | 1 | n0ii 4318 | . 2 ⊢ ¬ ℋ = ∅ |
| 3 | fn0 6669 | . . 3 ⊢ (𝑇 Fn ∅ ↔ 𝑇 = ∅) | |
| 4 | ffn 6706 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
| 5 | fndmu 6645 | . . . . 5 ⊢ ((𝑇 Fn ℋ ∧ 𝑇 Fn ∅) → ℋ = ∅) | |
| 6 | 5 | ex 412 | . . . 4 ⊢ (𝑇 Fn ℋ → (𝑇 Fn ∅ → ℋ = ∅)) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 Fn ∅ → ℋ = ∅)) |
| 8 | 3, 7 | biimtrrid 243 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 = ∅ → ℋ = ∅)) |
| 9 | 2, 8 | mtoi 199 | 1 ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∅c0 4308 Fn wfn 6526 ⟶wf 6527 ℋchba 30900 0ℎc0v 30905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-hv0cl 30984 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: hmdmadj 31921 |
| Copyright terms: Public domain | W3C validator |