HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hon0 Structured version   Visualization version   GIF version

Theorem hon0 31722
Description: A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hon0 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)

Proof of Theorem hon0
StepHypRef Expression
1 ax-hv0cl 30932 . . 3 0 ∈ ℋ
21n0ii 4306 . 2 ¬ ℋ = ∅
3 fn0 6649 . . 3 (𝑇 Fn ∅ ↔ 𝑇 = ∅)
4 ffn 6688 . . . 4 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
5 fndmu 6625 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑇 Fn ∅) → ℋ = ∅)
65ex 412 . . . 4 (𝑇 Fn ℋ → (𝑇 Fn ∅ → ℋ = ∅))
74, 6syl 17 . . 3 (𝑇: ℋ⟶ ℋ → (𝑇 Fn ∅ → ℋ = ∅))
83, 7biimtrrid 243 . 2 (𝑇: ℋ⟶ ℋ → (𝑇 = ∅ → ℋ = ∅))
92, 8mtoi 199 1 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  c0 4296   Fn wfn 6506  wf 6507  chba 30848  0c0v 30853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-hv0cl 30932
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  hmdmadj  31869
  Copyright terms: Public domain W3C validator