HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hon0 Structured version   Visualization version   GIF version

Theorem hon0 31033
Description: A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hon0 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)

Proof of Theorem hon0
StepHypRef Expression
1 ax-hv0cl 30243 . . 3 0 ∈ ℋ
21n0ii 4335 . 2 ¬ ℋ = ∅
3 fn0 6678 . . 3 (𝑇 Fn ∅ ↔ 𝑇 = ∅)
4 ffn 6714 . . . 4 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
5 fndmu 6653 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑇 Fn ∅) → ℋ = ∅)
65ex 413 . . . 4 (𝑇 Fn ℋ → (𝑇 Fn ∅ → ℋ = ∅))
74, 6syl 17 . . 3 (𝑇: ℋ⟶ ℋ → (𝑇 Fn ∅ → ℋ = ∅))
83, 7biimtrrid 242 . 2 (𝑇: ℋ⟶ ℋ → (𝑇 = ∅ → ℋ = ∅))
92, 8mtoi 198 1 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  c0 4321   Fn wfn 6535  wf 6536  chba 30159  0c0v 30164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-hv0cl 30243
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-fun 6542  df-fn 6543  df-f 6544
This theorem is referenced by:  hmdmadj  31180
  Copyright terms: Public domain W3C validator