HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hon0 Structured version   Visualization version   GIF version

Theorem hon0 30056
Description: A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hon0 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)

Proof of Theorem hon0
StepHypRef Expression
1 ax-hv0cl 29266 . . 3 0 ∈ ℋ
21n0ii 4267 . 2 ¬ ℋ = ∅
3 fn0 6548 . . 3 (𝑇 Fn ∅ ↔ 𝑇 = ∅)
4 ffn 6584 . . . 4 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
5 fndmu 6524 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑇 Fn ∅) → ℋ = ∅)
65ex 412 . . . 4 (𝑇 Fn ℋ → (𝑇 Fn ∅ → ℋ = ∅))
74, 6syl 17 . . 3 (𝑇: ℋ⟶ ℋ → (𝑇 Fn ∅ → ℋ = ∅))
83, 7syl5bir 242 . 2 (𝑇: ℋ⟶ ℋ → (𝑇 = ∅ → ℋ = ∅))
92, 8mtoi 198 1 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  c0 4253   Fn wfn 6413  wf 6414  chba 29182  0c0v 29187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-hv0cl 29266
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  hmdmadj  30203
  Copyright terms: Public domain W3C validator