![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hon0 | Structured version Visualization version GIF version |
Description: A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hon0 | ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 31035 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | 1 | n0ii 4366 | . 2 ⊢ ¬ ℋ = ∅ |
3 | fn0 6711 | . . 3 ⊢ (𝑇 Fn ∅ ↔ 𝑇 = ∅) | |
4 | ffn 6747 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
5 | fndmu 6686 | . . . . 5 ⊢ ((𝑇 Fn ℋ ∧ 𝑇 Fn ∅) → ℋ = ∅) | |
6 | 5 | ex 412 | . . . 4 ⊢ (𝑇 Fn ℋ → (𝑇 Fn ∅ → ℋ = ∅)) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 Fn ∅ → ℋ = ∅)) |
8 | 3, 7 | biimtrrid 243 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 = ∅ → ℋ = ∅)) |
9 | 2, 8 | mtoi 199 | 1 ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∅c0 4352 Fn wfn 6568 ⟶wf 6569 ℋchba 30951 0ℎc0v 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hv0cl 31035 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: hmdmadj 31972 |
Copyright terms: Public domain | W3C validator |