HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hon0 Structured version   Visualization version   GIF version

Theorem hon0 29228
Description: A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hon0 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)

Proof of Theorem hon0
StepHypRef Expression
1 ax-hv0cl 28436 . . 3 0 ∈ ℋ
21n0ii 4151 . 2 ¬ ℋ = ∅
3 fn0 6259 . . 3 (𝑇 Fn ∅ ↔ 𝑇 = ∅)
4 ffn 6293 . . . 4 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
5 fndmu 6240 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑇 Fn ∅) → ℋ = ∅)
65ex 403 . . . 4 (𝑇 Fn ℋ → (𝑇 Fn ∅ → ℋ = ∅))
74, 6syl 17 . . 3 (𝑇: ℋ⟶ ℋ → (𝑇 Fn ∅ → ℋ = ∅))
83, 7syl5bir 235 . 2 (𝑇: ℋ⟶ ℋ → (𝑇 = ∅ → ℋ = ∅))
92, 8mtoi 191 1 (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1601  c0 4141   Fn wfn 6132  wf 6133  chba 28352  0c0v 28357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-hv0cl 28436
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4889  df-opab 4951  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-fun 6139  df-fn 6140  df-f 6141
This theorem is referenced by:  hmdmadj  29375
  Copyright terms: Public domain W3C validator