Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hon0 | Structured version Visualization version GIF version |
Description: A Hilbert space operator is not empty. (Contributed by NM, 24-Mar-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hon0 | ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 29266 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | 1 | n0ii 4267 | . 2 ⊢ ¬ ℋ = ∅ |
3 | fn0 6548 | . . 3 ⊢ (𝑇 Fn ∅ ↔ 𝑇 = ∅) | |
4 | ffn 6584 | . . . 4 ⊢ (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ) | |
5 | fndmu 6524 | . . . . 5 ⊢ ((𝑇 Fn ℋ ∧ 𝑇 Fn ∅) → ℋ = ∅) | |
6 | 5 | ex 412 | . . . 4 ⊢ (𝑇 Fn ℋ → (𝑇 Fn ∅ → ℋ = ∅)) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 Fn ∅ → ℋ = ∅)) |
8 | 3, 7 | syl5bir 242 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 = ∅ → ℋ = ∅)) |
9 | 2, 8 | mtoi 198 | 1 ⊢ (𝑇: ℋ⟶ ℋ → ¬ 𝑇 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∅c0 4253 Fn wfn 6413 ⟶wf 6414 ℋchba 29182 0ℎc0v 29187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-hv0cl 29266 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-fun 6420 df-fn 6421 df-f 6422 |
This theorem is referenced by: hmdmadj 30203 |
Copyright terms: Public domain | W3C validator |