| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnbr | Structured version Visualization version GIF version | ||
| Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.) |
| Ref | Expression |
|---|---|
| fnbr | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6623 | . . 3 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | releldm 5911 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹) |
| 4 | fndm 6624 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 5 | 4 | eleq2d 2815 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
| 6 | 5 | biimpa 476 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ dom 𝐹) → 𝐵 ∈ 𝐴) |
| 7 | 3, 6 | syldan 591 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 Rel wrel 5646 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 df-fun 6516 df-fn 6517 |
| This theorem is referenced by: fnop 6630 fvelima2 6916 dffn5 6922 feqmptdf 6934 dffo4 7078 dffo5 7079 tfrlem5 8351 occllem 31239 chscllem2 31574 tfsconcat0i 43341 brcoffn 44026 dfafn5a 47165 |
| Copyright terms: Public domain | W3C validator |