| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnbr | Structured version Visualization version GIF version | ||
| Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.) |
| Ref | Expression |
|---|---|
| fnbr | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrel 6602 | . . 3 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
| 2 | releldm 5897 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹) |
| 4 | fndm 6603 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 5 | 4 | eleq2d 2814 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
| 6 | 5 | biimpa 476 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ dom 𝐹) → 𝐵 ∈ 𝐴) |
| 7 | 3, 6 | syldan 591 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 dom cdm 5631 Rel wrel 5636 Fn wfn 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-fun 6501 df-fn 6502 |
| This theorem is referenced by: fnop 6609 fvelima2 6895 dffn5 6901 feqmptdf 6913 dffo4 7057 dffo5 7058 tfrlem5 8325 occllem 31282 chscllem2 31617 tfsconcat0i 43327 brcoffn 44012 dfafn5a 47154 |
| Copyright terms: Public domain | W3C validator |