MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnbr Structured version   Visualization version   GIF version

Theorem fnbr 6687
Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
Assertion
Ref Expression
fnbr ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)

Proof of Theorem fnbr
StepHypRef Expression
1 fnrel 6681 . . 3 (𝐹 Fn 𝐴 → Rel 𝐹)
2 releldm 5969 . . 3 ((Rel 𝐹𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹)
31, 2sylan 579 . 2 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹)
4 fndm 6682 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54eleq2d 2830 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹𝐵𝐴))
65biimpa 476 . 2 ((𝐹 Fn 𝐴𝐵 ∈ dom 𝐹) → 𝐵𝐴)
73, 6syldan 590 1 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   class class class wbr 5166  dom cdm 5700  Rel wrel 5705   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-fun 6575  df-fn 6576
This theorem is referenced by:  fnop  6688  dffn5  6980  feqmptdf  6992  dffo4  7137  dffo5  7138  tfrlem5  8436  occllem  31335  chscllem2  31670  tfsconcat0i  43307  brcoffn  43992  fvelima2  45169  dfafn5a  47075
  Copyright terms: Public domain W3C validator