![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnbr | Structured version Visualization version GIF version |
Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.) |
Ref | Expression |
---|---|
fnbr | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6642 | . . 3 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | releldm 5934 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹) |
4 | fndm 6643 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
5 | 4 | eleq2d 2811 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
6 | 5 | biimpa 476 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ dom 𝐹) → 𝐵 ∈ 𝐴) |
7 | 3, 6 | syldan 590 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵𝐹𝐶) → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 class class class wbr 5139 dom cdm 5667 Rel wrel 5672 Fn wfn 6529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-xp 5673 df-rel 5674 df-dm 5677 df-fun 6536 df-fn 6537 |
This theorem is referenced by: fnop 6649 dffn5 6941 feqmptdf 6953 dffo4 7095 dffo5 7096 tfrlem5 8376 occllem 31028 chscllem2 31363 tfsconcat0i 42609 brcoffn 43295 fvelima2 44474 dfafn5a 46378 |
Copyright terms: Public domain | W3C validator |