MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnbr Structured version   Visualization version   GIF version

Theorem fnbr 6654
Description: The first argument of binary relation on a function belongs to the function's domain. (Contributed by NM, 7-May-2004.)
Assertion
Ref Expression
fnbr ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)

Proof of Theorem fnbr
StepHypRef Expression
1 fnrel 6648 . . 3 (𝐹 Fn 𝐴 → Rel 𝐹)
2 releldm 5941 . . 3 ((Rel 𝐹𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹)
31, 2sylan 580 . 2 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵 ∈ dom 𝐹)
4 fndm 6649 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
54eleq2d 2819 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹𝐵𝐴))
65biimpa 477 . 2 ((𝐹 Fn 𝐴𝐵 ∈ dom 𝐹) → 𝐵𝐴)
73, 6syldan 591 1 ((𝐹 Fn 𝐴𝐵𝐹𝐶) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106   class class class wbr 5147  dom cdm 5675  Rel wrel 5680   Fn wfn 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-dm 5685  df-fun 6542  df-fn 6543
This theorem is referenced by:  fnop  6655  dffn5  6947  feqmptdf  6959  dffo4  7101  dffo5  7102  tfrlem5  8376  occllem  30543  chscllem2  30878  tfsconcat0i  42080  brcoffn  42766  fvelima2  43950  dfafn5a  45854
  Copyright terms: Public domain W3C validator