Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfni | Structured version Visualization version GIF version |
Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
funfni.1 | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) |
Ref | Expression |
---|---|
funfni | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6517 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | fndm 6520 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 2 | eleq2d 2824 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
4 | 3 | biimpar 477 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
5 | funfni.1 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) | |
6 | 1, 4, 5 | syl2an2r 681 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 dom cdm 5580 Fun wfun 6412 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-fn 6421 |
This theorem is referenced by: fneu 6527 elpreima 6917 fnopfv 6935 fnfvelrn 6940 funressnfv 44424 fnafvelrn 44548 afvco2 44555 fnafv2elrn 44612 fnbrafv2b 44627 |
Copyright terms: Public domain | W3C validator |