MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfni Structured version   Visualization version   GIF version

Theorem funfni 6624
Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.)
Hypothesis
Ref Expression
funfni.1 ((Fun 𝐹𝐵 ∈ dom 𝐹) → 𝜑)
Assertion
Ref Expression
funfni ((𝐹 Fn 𝐴𝐵𝐴) → 𝜑)

Proof of Theorem funfni
StepHypRef Expression
1 fnfun 6618 . 2 (𝐹 Fn 𝐴 → Fun 𝐹)
2 fndm 6621 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
32eleq2d 2814 . . 3 (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹𝐵𝐴))
43biimpar 477 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵 ∈ dom 𝐹)
5 funfni.1 . 2 ((Fun 𝐹𝐵 ∈ dom 𝐹) → 𝜑)
61, 4, 5syl2an2r 685 1 ((𝐹 Fn 𝐴𝐵𝐴) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  dom cdm 5638  Fun wfun 6505   Fn wfn 6506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-clel 2803  df-fn 6514
This theorem is referenced by:  fneu  6628  elpreima  7030  fnopfv  7047  fnfvelrn  7052  funressnfv  47044  fnafvelrn  47170  afvco2  47177  fnafv2elrn  47234  fnbrafv2b  47249
  Copyright terms: Public domain W3C validator