![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfni | Structured version Visualization version GIF version |
Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
funfni.1 | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) |
Ref | Expression |
---|---|
funfni | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6679 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | fndm 6682 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 2 | eleq2d 2830 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
4 | 3 | biimpar 477 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
5 | funfni.1 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝜑) | |
6 | 1, 4, 5 | syl2an2r 684 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 dom cdm 5700 Fun wfun 6567 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-fn 6576 |
This theorem is referenced by: fneu 6689 elpreima 7091 fnopfv 7109 fnfvelrn 7114 funressnfv 46958 fnafvelrn 47084 afvco2 47091 fnafv2elrn 47148 fnbrafv2b 47163 |
Copyright terms: Public domain | W3C validator |