Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege93 Structured version   Visualization version   GIF version

Theorem frege93 40465
 Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege93 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌)
Distinct variable groups:   𝑧,𝑓,𝑅   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑧   𝑓,𝑌
Allowed substitution hints:   𝑈(𝑧)   𝑉(𝑧)   𝑊(𝑧)   𝑌(𝑧)

Proof of Theorem frege93
StepHypRef Expression
1 vex 3474 . . . . 5 𝑓 ∈ V
21frege60c 40432 . . . 4 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ([𝑓 / 𝑓]𝑅 hereditary 𝑓 → ([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) → [𝑓 / 𝑓]𝑌𝑓)))
3 sbcid 3766 . . . 4 ([𝑓 / 𝑓]𝑅 hereditary 𝑓𝑅 hereditary 𝑓)
4 sbcid 3766 . . . . 5 ([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) ↔ ∀𝑧(𝑋𝑅𝑧𝑧𝑓))
5 sbcid 3766 . . . . 5 ([𝑓 / 𝑓]𝑌𝑓𝑌𝑓)
64, 5imbi12i 354 . . . 4 (([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) → [𝑓 / 𝑓]𝑌𝑓) ↔ (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓))
72, 3, 63imtr3g 298 . . 3 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → (𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓)))
87axc4i 2342 . 2 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓)))
9 frege91.x . . 3 𝑋𝑈
10 frege91.y . . 3 𝑌𝑉
11 frege91.r . . 3 𝑅𝑊
129, 10, 11frege90 40462 . 2 ((∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓))) → (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌))
138, 12ax-mp 5 1 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1536   ∈ wcel 2115  Vcvv 3471  [wsbc 3749   class class class wbr 5039  ‘cfv 6328  t+ctcl 14324   hereditary whe 40281 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-frege1 40299  ax-frege2 40300  ax-frege8 40318  ax-frege52a 40366  ax-frege58b 40410 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-n0 11876  df-z 11960  df-uz 12222  df-seq 13353  df-trcl 14326  df-relexp 14359  df-he 40282 This theorem is referenced by:  frege94  40466
 Copyright terms: Public domain W3C validator