![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege93 | Structured version Visualization version GIF version |
Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege93 | ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3388 | . . . . 5 ⊢ 𝑓 ∈ V | |
2 | 1 | frege60c 38995 | . . . 4 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ([𝑓 / 𝑓]𝑅 hereditary 𝑓 → ([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → [𝑓 / 𝑓]𝑌 ∈ 𝑓))) |
3 | sbcid 3650 | . . . 4 ⊢ ([𝑓 / 𝑓]𝑅 hereditary 𝑓 ↔ 𝑅 hereditary 𝑓) | |
4 | sbcid 3650 | . . . . 5 ⊢ ([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) ↔ ∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓)) | |
5 | sbcid 3650 | . . . . 5 ⊢ ([𝑓 / 𝑓]𝑌 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓) | |
6 | 4, 5 | imbi12i 342 | . . . 4 ⊢ (([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → [𝑓 / 𝑓]𝑌 ∈ 𝑓) ↔ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓)) |
7 | 2, 3, 6 | 3imtr3g 287 | . . 3 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → (𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
8 | 7 | axc4i 2344 | . 2 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
9 | frege91.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
10 | frege91.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
11 | frege91.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
12 | 9, 10, 11 | frege90 39025 | . 2 ⊢ ((∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌)) |
13 | 8, 12 | ax-mp 5 | 1 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1651 ∈ wcel 2157 Vcvv 3385 [wsbc 3633 class class class wbr 4843 ‘cfv 6101 t+ctcl 14067 hereditary whe 38844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-frege1 38862 ax-frege2 38863 ax-frege8 38881 ax-frege52a 38929 ax-frege58b 38973 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ifp 1087 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-n0 11581 df-z 11667 df-uz 11931 df-seq 13056 df-trcl 14069 df-relexp 14102 df-he 38845 |
This theorem is referenced by: frege94 39029 |
Copyright terms: Public domain | W3C validator |