Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege93 Structured version   Visualization version   GIF version

Theorem frege93 41269
Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege93 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌)
Distinct variable groups:   𝑧,𝑓,𝑅   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑧   𝑓,𝑌
Allowed substitution hints:   𝑈(𝑧)   𝑉(𝑧)   𝑊(𝑧)   𝑌(𝑧)

Proof of Theorem frege93
StepHypRef Expression
1 vex 3424 . . . . 5 𝑓 ∈ V
21frege60c 41236 . . . 4 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ([𝑓 / 𝑓]𝑅 hereditary 𝑓 → ([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) → [𝑓 / 𝑓]𝑌𝑓)))
3 sbcid 3725 . . . 4 ([𝑓 / 𝑓]𝑅 hereditary 𝑓𝑅 hereditary 𝑓)
4 sbcid 3725 . . . . 5 ([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) ↔ ∀𝑧(𝑋𝑅𝑧𝑧𝑓))
5 sbcid 3725 . . . . 5 ([𝑓 / 𝑓]𝑌𝑓𝑌𝑓)
64, 5imbi12i 354 . . . 4 (([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) → [𝑓 / 𝑓]𝑌𝑓) ↔ (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓))
72, 3, 63imtr3g 298 . . 3 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → (𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓)))
87axc4i 2322 . 2 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓)))
9 frege91.x . . 3 𝑋𝑈
10 frege91.y . . 3 𝑌𝑉
11 frege91.r . . 3 𝑅𝑊
129, 10, 11frege90 41266 . 2 ((∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓))) → (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌))
138, 12ax-mp 5 1 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1541  wcel 2111  Vcvv 3420  [wsbc 3708   class class class wbr 5067  cfv 6397  t+ctcl 14572   hereditary whe 41085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-frege1 41103  ax-frege2 41104  ax-frege8 41122  ax-frege52a 41170  ax-frege58b 41214
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-int 4874  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-er 8411  df-en 8647  df-dom 8648  df-sdom 8649  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-nn 11855  df-2 11917  df-n0 12115  df-z 12201  df-uz 12463  df-seq 13599  df-trcl 14574  df-relexp 14607  df-he 41086
This theorem is referenced by:  frege94  41270
  Copyright terms: Public domain W3C validator