![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege93 | Structured version Visualization version GIF version |
Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege93 | ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3475 | . . . . 5 ⊢ 𝑓 ∈ V | |
2 | 1 | frege60c 43356 | . . . 4 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ([𝑓 / 𝑓]𝑅 hereditary 𝑓 → ([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → [𝑓 / 𝑓]𝑌 ∈ 𝑓))) |
3 | sbcid 3793 | . . . 4 ⊢ ([𝑓 / 𝑓]𝑅 hereditary 𝑓 ↔ 𝑅 hereditary 𝑓) | |
4 | sbcid 3793 | . . . . 5 ⊢ ([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) ↔ ∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓)) | |
5 | sbcid 3793 | . . . . 5 ⊢ ([𝑓 / 𝑓]𝑌 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓) | |
6 | 4, 5 | imbi12i 349 | . . . 4 ⊢ (([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → [𝑓 / 𝑓]𝑌 ∈ 𝑓) ↔ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓)) |
7 | 2, 3, 6 | 3imtr3g 294 | . . 3 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → (𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
8 | 7 | axc4i 2310 | . 2 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
9 | frege91.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
10 | frege91.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
11 | frege91.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
12 | 9, 10, 11 | frege90 43386 | . 2 ⊢ ((∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌)) |
13 | 8, 12 | ax-mp 5 | 1 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 ∈ wcel 2098 Vcvv 3471 [wsbc 3776 class class class wbr 5150 ‘cfv 6551 t+ctcl 14970 hereditary whe 43205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-frege1 43223 ax-frege2 43224 ax-frege8 43242 ax-frege52a 43290 ax-frege58b 43334 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-n0 12509 df-z 12595 df-uz 12859 df-seq 14005 df-trcl 14972 df-relexp 15005 df-he 43206 |
This theorem is referenced by: frege94 43390 |
Copyright terms: Public domain | W3C validator |