Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege93 | Structured version Visualization version GIF version |
Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege93 | ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3424 | . . . . 5 ⊢ 𝑓 ∈ V | |
2 | 1 | frege60c 41236 | . . . 4 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ([𝑓 / 𝑓]𝑅 hereditary 𝑓 → ([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → [𝑓 / 𝑓]𝑌 ∈ 𝑓))) |
3 | sbcid 3725 | . . . 4 ⊢ ([𝑓 / 𝑓]𝑅 hereditary 𝑓 ↔ 𝑅 hereditary 𝑓) | |
4 | sbcid 3725 | . . . . 5 ⊢ ([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) ↔ ∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓)) | |
5 | sbcid 3725 | . . . . 5 ⊢ ([𝑓 / 𝑓]𝑌 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓) | |
6 | 4, 5 | imbi12i 354 | . . . 4 ⊢ (([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → [𝑓 / 𝑓]𝑌 ∈ 𝑓) ↔ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓)) |
7 | 2, 3, 6 | 3imtr3g 298 | . . 3 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → (𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
8 | 7 | axc4i 2322 | . 2 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
9 | frege91.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
10 | frege91.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
11 | frege91.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
12 | 9, 10, 11 | frege90 41266 | . 2 ⊢ ((∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌)) |
13 | 8, 12 | ax-mp 5 | 1 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1541 ∈ wcel 2111 Vcvv 3420 [wsbc 3708 class class class wbr 5067 ‘cfv 6397 t+ctcl 14572 hereditary whe 41085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 ax-frege1 41103 ax-frege2 41104 ax-frege8 41122 ax-frege52a 41170 ax-frege58b 41214 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-2nd 7780 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-n0 12115 df-z 12201 df-uz 12463 df-seq 13599 df-trcl 14574 df-relexp 14607 df-he 41086 |
This theorem is referenced by: frege94 41270 |
Copyright terms: Public domain | W3C validator |