Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege93 Structured version   Visualization version   GIF version

Theorem frege93 40180
Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege93 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌)
Distinct variable groups:   𝑧,𝑓,𝑅   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑧   𝑓,𝑌
Allowed substitution hints:   𝑈(𝑧)   𝑉(𝑧)   𝑊(𝑧)   𝑌(𝑧)

Proof of Theorem frege93
StepHypRef Expression
1 vex 3495 . . . . 5 𝑓 ∈ V
21frege60c 40147 . . . 4 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ([𝑓 / 𝑓]𝑅 hereditary 𝑓 → ([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) → [𝑓 / 𝑓]𝑌𝑓)))
3 sbcid 3786 . . . 4 ([𝑓 / 𝑓]𝑅 hereditary 𝑓𝑅 hereditary 𝑓)
4 sbcid 3786 . . . . 5 ([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) ↔ ∀𝑧(𝑋𝑅𝑧𝑧𝑓))
5 sbcid 3786 . . . . 5 ([𝑓 / 𝑓]𝑌𝑓𝑌𝑓)
64, 5imbi12i 352 . . . 4 (([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) → [𝑓 / 𝑓]𝑌𝑓) ↔ (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓))
72, 3, 63imtr3g 296 . . 3 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → (𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓)))
87axc4i 2332 . 2 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓)))
9 frege91.x . . 3 𝑋𝑈
10 frege91.y . . 3 𝑌𝑉
11 frege91.r . . 3 𝑅𝑊
129, 10, 11frege90 40177 . 2 ((∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓))) → (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌))
138, 12ax-mp 5 1 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1526  wcel 2105  Vcvv 3492  [wsbc 3769   class class class wbr 5057  cfv 6348  t+ctcl 14333   hereditary whe 39996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-frege1 40014  ax-frege2 40015  ax-frege8 40033  ax-frege52a 40081  ax-frege58b 40125
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-ifp 1055  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13358  df-trcl 14335  df-relexp 14368  df-he 39997
This theorem is referenced by:  frege94  40181
  Copyright terms: Public domain W3C validator