Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege93 Structured version   Visualization version   GIF version

Theorem frege93 43859
Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege91.x 𝑋𝑈
frege91.y 𝑌𝑉
frege91.r 𝑅𝑊
Assertion
Ref Expression
frege93 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌)
Distinct variable groups:   𝑧,𝑓,𝑅   𝑈,𝑓   𝑓,𝑉   𝑓,𝑊   𝑓,𝑋,𝑧   𝑓,𝑌
Allowed substitution hints:   𝑈(𝑧)   𝑉(𝑧)   𝑊(𝑧)   𝑌(𝑧)

Proof of Theorem frege93
StepHypRef Expression
1 vex 3486 . . . . 5 𝑓 ∈ V
21frege60c 43826 . . . 4 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ([𝑓 / 𝑓]𝑅 hereditary 𝑓 → ([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) → [𝑓 / 𝑓]𝑌𝑓)))
3 sbcid 3815 . . . 4 ([𝑓 / 𝑓]𝑅 hereditary 𝑓𝑅 hereditary 𝑓)
4 sbcid 3815 . . . . 5 ([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) ↔ ∀𝑧(𝑋𝑅𝑧𝑧𝑓))
5 sbcid 3815 . . . . 5 ([𝑓 / 𝑓]𝑌𝑓𝑌𝑓)
64, 5imbi12i 350 . . . 4 (([𝑓 / 𝑓]𝑧(𝑋𝑅𝑧𝑧𝑓) → [𝑓 / 𝑓]𝑌𝑓) ↔ (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓))
72, 3, 63imtr3g 295 . . 3 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → (𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓)))
87axc4i 2319 . 2 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓)))
9 frege91.x . . 3 𝑋𝑈
10 frege91.y . . 3 𝑌𝑉
11 frege91.r . . 3 𝑅𝑊
129, 10, 11frege90 43856 . 2 ((∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧𝑧𝑓) → 𝑌𝑓))) → (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌))
138, 12ax-mp 5 1 (∀𝑓(∀𝑧(𝑋𝑅𝑧𝑧𝑓) → (𝑅 hereditary 𝑓𝑌𝑓)) → 𝑋(t+‘𝑅)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2103  Vcvv 3482  [wsbc 3798   class class class wbr 5169  cfv 6572  t+ctcl 15030   hereditary whe 43675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-frege1 43693  ax-frege2 43694  ax-frege8 43712  ax-frege52a 43760  ax-frege58b 43804
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-n0 12550  df-z 12636  df-uz 12900  df-seq 14049  df-trcl 15032  df-relexp 15065  df-he 43676
This theorem is referenced by:  frege94  43860
  Copyright terms: Public domain W3C validator