![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > freq12d | Structured version Visualization version GIF version |
Description: Equality deduction for founded relations. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
Ref | Expression |
---|---|
weeq12d.l | ⊢ (𝜑 → 𝑅 = 𝑆) |
weeq12d.r | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
freq12d | ⊢ (𝜑 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weeq12d.l | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
2 | freq1 5604 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) |
4 | weeq12d.r | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | freq2 5605 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑆 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) |
7 | 3, 6 | bitrd 279 | 1 ⊢ (𝜑 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 Fr wfr 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-v 3446 df-in 3918 df-ss 3928 df-br 5107 df-fr 5589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |