MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soeq12d Structured version   Visualization version   GIF version

Theorem soeq12d 5620
Description: Equality deduction for total orderings. (Contributed by Stefan O'Rear, 19-Jan-2015.) (Proof shortened by Matthew House, 10-Sep-2025.)
Hypotheses
Ref Expression
soeq12d.1 (𝜑𝑅 = 𝑆)
soeq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
soeq12d (𝜑 → (𝑅 Or 𝐴𝑆 Or 𝐵))

Proof of Theorem soeq12d
StepHypRef Expression
1 soeq12d.1 . 2 (𝜑𝑅 = 𝑆)
2 soeq12d.2 . 2 (𝜑𝐴 = 𝐵)
3 soeq1 5618 . . 3 (𝑅 = 𝑆 → (𝑅 Or 𝐴𝑆 Or 𝐴))
4 soeq2 5619 . . 3 (𝐴 = 𝐵 → (𝑆 Or 𝐴𝑆 Or 𝐵))
53, 4sylan9bb 509 . 2 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑅 Or 𝐴𝑆 Or 𝐵))
61, 2, 5syl2anc 584 1 (𝜑 → (𝑅 Or 𝐴𝑆 Or 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537   Or wor 5596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-ex 1777  df-cleq 2727  df-clel 2814  df-ral 3060  df-ss 3980  df-br 5149  df-po 5597  df-so 5598
This theorem is referenced by:  opsrtoslem2  22098  weiunso  36449
  Copyright terms: Public domain W3C validator