![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > soeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for total orderings. (Contributed by Stefan O'Rear, 19-Jan-2015.) (Proof shortened by Matthew House, 10-Sep-2025.) |
Ref | Expression |
---|---|
soeq12d.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
soeq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
soeq12d | ⊢ (𝜑 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | soeq12d.1 | . 2 ⊢ (𝜑 → 𝑅 = 𝑆) | |
2 | soeq12d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | soeq1 5618 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐴)) | |
4 | soeq2 5619 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑆 Or 𝐴 ↔ 𝑆 Or 𝐵)) | |
5 | 3, 4 | sylan9bb 509 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵)) |
6 | 1, 2, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Or wor 5596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-ex 1777 df-cleq 2727 df-clel 2814 df-ral 3060 df-ss 3980 df-br 5149 df-po 5597 df-so 5598 |
This theorem is referenced by: opsrtoslem2 22098 weiunso 36449 |
Copyright terms: Public domain | W3C validator |