Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fr Structured version   Visualization version   GIF version

Definition df-fr 5482
 Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5488 and dffr3 5933. A class is called well-founded when the membership relation E (see df-eprel 5433) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-fr (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Definition df-fr
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wfr 5479 . 2 wff 𝑅 Fr 𝐴
4 vx . . . . . . 7 setvar 𝑥
54cv 1537 . . . . . 6 class 𝑥
65, 1wss 3884 . . . . 5 wff 𝑥𝐴
7 c0 4246 . . . . . 6 class
85, 7wne 2990 . . . . 5 wff 𝑥 ≠ ∅
96, 8wa 399 . . . 4 wff (𝑥𝐴𝑥 ≠ ∅)
10 vz . . . . . . . . 9 setvar 𝑧
1110cv 1537 . . . . . . . 8 class 𝑧
12 vy . . . . . . . . 9 setvar 𝑦
1312cv 1537 . . . . . . . 8 class 𝑦
1411, 13, 2wbr 5033 . . . . . . 7 wff 𝑧𝑅𝑦
1514wn 3 . . . . . 6 wff ¬ 𝑧𝑅𝑦
1615, 10, 5wral 3109 . . . . 5 wff 𝑧𝑥 ¬ 𝑧𝑅𝑦
1716, 12, 5wrex 3110 . . . 4 wff 𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦
189, 17wi 4 . . 3 wff ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
1918, 4wal 1536 . 2 wff 𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
203, 19wb 209 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
 Colors of variables: wff setvar class This definition is referenced by:  fri  5485  dffr2  5488  frss  5490  freq1  5493  nffr  5497  frinxp  5602  frsn  5607  f1oweALT  7659  frxp  7807  frfi  8751  fpwwe2lem12  10056  fpwwe2lem13  10057  bnj1154  32385  dffr5  33103  dfon2lem9  33150  finorwe  34800  fin2so  35043  fnwe2  39990
 Copyright terms: Public domain W3C validator