| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fr | Structured version Visualization version GIF version | ||
| Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5574 and dffr3 6044. A class is called well-founded when the membership relation E (see df-eprel 5513) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-fr | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wfr 5563 | . 2 wff 𝑅 Fr 𝐴 |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | 5, 1 | wss 3899 | . . . . 5 wff 𝑥 ⊆ 𝐴 |
| 7 | c0 4280 | . . . . . 6 class ∅ | |
| 8 | 5, 7 | wne 2925 | . . . . 5 wff 𝑥 ≠ ∅ |
| 9 | 6, 8 | wa 395 | . . . 4 wff (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) |
| 10 | vz | . . . . . . . . 9 setvar 𝑧 | |
| 11 | 10 | cv 1539 | . . . . . . . 8 class 𝑧 |
| 12 | vy | . . . . . . . . 9 setvar 𝑦 | |
| 13 | 12 | cv 1539 | . . . . . . . 8 class 𝑦 |
| 14 | 11, 13, 2 | wbr 5088 | . . . . . . 7 wff 𝑧𝑅𝑦 |
| 15 | 14 | wn 3 | . . . . . 6 wff ¬ 𝑧𝑅𝑦 |
| 16 | 15, 10, 5 | wral 3044 | . . . . 5 wff ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
| 17 | 16, 12, 5 | wrex 3053 | . . . 4 wff ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
| 18 | 9, 17 | wi 4 | . . 3 wff ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 19 | 18, 4 | wal 1538 | . 2 wff ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 20 | 3, 19 | wb 206 | 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dffr6 5569 dffr2 5574 dffr2ALT 5575 frss 5577 freq1 5580 nffr 5586 frinxp 5696 frsn 5701 f1oweALT 7898 frxp 8050 frxp2 8068 frxp3 8075 frfi 9163 fpwwe2lem11 10523 fpwwe2lem12 10524 lrrecfr 27840 bnj1154 34979 vonf1owev 35098 dffr5 35744 dfon2lem9 35782 weiunfr 36458 finorwe 37373 fin2so 37604 fnwe2 43043 |
| Copyright terms: Public domain | W3C validator |