Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fr | Structured version Visualization version GIF version |
Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5554 and dffr3 6010. A class is called well-founded when the membership relation E (see df-eprel 5496) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-fr | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wfr 5542 | . 2 wff 𝑅 Fr 𝐴 |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 4 | cv 1538 | . . . . . 6 class 𝑥 |
6 | 5, 1 | wss 3888 | . . . . 5 wff 𝑥 ⊆ 𝐴 |
7 | c0 4257 | . . . . . 6 class ∅ | |
8 | 5, 7 | wne 2944 | . . . . 5 wff 𝑥 ≠ ∅ |
9 | 6, 8 | wa 396 | . . . 4 wff (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) |
10 | vz | . . . . . . . . 9 setvar 𝑧 | |
11 | 10 | cv 1538 | . . . . . . . 8 class 𝑧 |
12 | vy | . . . . . . . . 9 setvar 𝑦 | |
13 | 12 | cv 1538 | . . . . . . . 8 class 𝑦 |
14 | 11, 13, 2 | wbr 5075 | . . . . . . 7 wff 𝑧𝑅𝑦 |
15 | 14 | wn 3 | . . . . . 6 wff ¬ 𝑧𝑅𝑦 |
16 | 15, 10, 5 | wral 3065 | . . . . 5 wff ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
17 | 16, 12, 5 | wrex 3066 | . . . 4 wff ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
18 | 9, 17 | wi 4 | . . 3 wff ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
19 | 18, 4 | wal 1537 | . 2 wff ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
20 | 3, 19 | wb 205 | 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
Colors of variables: wff setvar class |
This definition is referenced by: dffr6 5548 friOLD 5551 dffr2 5554 dffr2ALT 5555 frss 5557 freq1 5560 nffr 5564 frinxp 5670 frsn 5675 f1oweALT 7824 frxp 7976 frfi 9068 fpwwe2lem11 10406 fpwwe2lem12 10407 bnj1154 32988 dffr5 33730 dfon2lem9 33776 frxp2 33800 frxp3 33806 lrrecfr 34109 finorwe 35562 fin2so 35773 fnwe2 40885 |
Copyright terms: Public domain | W3C validator |