MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fr Structured version   Visualization version   GIF version

Definition df-fr 5591
Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5599 and dffr3 6070. A class is called well-founded when the membership relation E (see df-eprel 5538) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-fr (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Definition df-fr
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wfr 5588 . 2 wff 𝑅 Fr 𝐴
4 vx . . . . . . 7 setvar 𝑥
54cv 1539 . . . . . 6 class 𝑥
65, 1wss 3914 . . . . 5 wff 𝑥𝐴
7 c0 4296 . . . . . 6 class
85, 7wne 2925 . . . . 5 wff 𝑥 ≠ ∅
96, 8wa 395 . . . 4 wff (𝑥𝐴𝑥 ≠ ∅)
10 vz . . . . . . . . 9 setvar 𝑧
1110cv 1539 . . . . . . . 8 class 𝑧
12 vy . . . . . . . . 9 setvar 𝑦
1312cv 1539 . . . . . . . 8 class 𝑦
1411, 13, 2wbr 5107 . . . . . . 7 wff 𝑧𝑅𝑦
1514wn 3 . . . . . 6 wff ¬ 𝑧𝑅𝑦
1615, 10, 5wral 3044 . . . . 5 wff 𝑧𝑥 ¬ 𝑧𝑅𝑦
1716, 12, 5wrex 3053 . . . 4 wff 𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦
189, 17wi 4 . . 3 wff ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
1918, 4wal 1538 . 2 wff 𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
203, 19wb 206 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
Colors of variables: wff setvar class
This definition is referenced by:  dffr6  5594  dffr2  5599  dffr2ALT  5600  frss  5602  freq1  5605  nffr  5611  frinxp  5721  frsn  5726  f1oweALT  7951  frxp  8105  frxp2  8123  frxp3  8130  frfi  9232  fpwwe2lem11  10594  fpwwe2lem12  10595  lrrecfr  27850  bnj1154  34989  vonf1owev  35095  dffr5  35741  dfon2lem9  35779  weiunfr  36455  finorwe  37370  fin2so  37601  fnwe2  43042
  Copyright terms: Public domain W3C validator