Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fr | Structured version Visualization version GIF version |
Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5588 and dffr3 6041. A class is called well-founded when the membership relation E (see df-eprel 5528) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-fr | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wfr 5576 | . 2 wff 𝑅 Fr 𝐴 |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 4 | cv 1540 | . . . . . 6 class 𝑥 |
6 | 5, 1 | wss 3901 | . . . . 5 wff 𝑥 ⊆ 𝐴 |
7 | c0 4273 | . . . . . 6 class ∅ | |
8 | 5, 7 | wne 2941 | . . . . 5 wff 𝑥 ≠ ∅ |
9 | 6, 8 | wa 397 | . . . 4 wff (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) |
10 | vz | . . . . . . . . 9 setvar 𝑧 | |
11 | 10 | cv 1540 | . . . . . . . 8 class 𝑧 |
12 | vy | . . . . . . . . 9 setvar 𝑦 | |
13 | 12 | cv 1540 | . . . . . . . 8 class 𝑦 |
14 | 11, 13, 2 | wbr 5096 | . . . . . . 7 wff 𝑧𝑅𝑦 |
15 | 14 | wn 3 | . . . . . 6 wff ¬ 𝑧𝑅𝑦 |
16 | 15, 10, 5 | wral 3062 | . . . . 5 wff ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
17 | 16, 12, 5 | wrex 3071 | . . . 4 wff ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
18 | 9, 17 | wi 4 | . . 3 wff ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
19 | 18, 4 | wal 1539 | . 2 wff ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
20 | 3, 19 | wb 205 | 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
Colors of variables: wff setvar class |
This definition is referenced by: dffr6 5582 friOLD 5585 dffr2 5588 dffr2ALT 5589 frss 5591 freq1 5594 nffr 5598 frinxp 5704 frsn 5709 f1oweALT 7887 frxp 8038 frfi 9157 fpwwe2lem11 10502 fpwwe2lem12 10503 bnj1154 33276 dffr5 34010 dfon2lem9 34050 frxp2 34073 frxp3 34079 lrrecfr 34208 finorwe 35707 fin2so 35920 fnwe2 41192 |
Copyright terms: Public domain | W3C validator |