Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-fr | Structured version Visualization version GIF version |
Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5544 and dffr3 5996. A class is called well-founded when the membership relation E (see df-eprel 5486) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-fr | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wfr 5532 | . 2 wff 𝑅 Fr 𝐴 |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 4 | cv 1538 | . . . . . 6 class 𝑥 |
6 | 5, 1 | wss 3883 | . . . . 5 wff 𝑥 ⊆ 𝐴 |
7 | c0 4253 | . . . . . 6 class ∅ | |
8 | 5, 7 | wne 2942 | . . . . 5 wff 𝑥 ≠ ∅ |
9 | 6, 8 | wa 395 | . . . 4 wff (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) |
10 | vz | . . . . . . . . 9 setvar 𝑧 | |
11 | 10 | cv 1538 | . . . . . . . 8 class 𝑧 |
12 | vy | . . . . . . . . 9 setvar 𝑦 | |
13 | 12 | cv 1538 | . . . . . . . 8 class 𝑦 |
14 | 11, 13, 2 | wbr 5070 | . . . . . . 7 wff 𝑧𝑅𝑦 |
15 | 14 | wn 3 | . . . . . 6 wff ¬ 𝑧𝑅𝑦 |
16 | 15, 10, 5 | wral 3063 | . . . . 5 wff ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
17 | 16, 12, 5 | wrex 3064 | . . . 4 wff ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
18 | 9, 17 | wi 4 | . . 3 wff ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
19 | 18, 4 | wal 1537 | . 2 wff ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
20 | 3, 19 | wb 205 | 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
Colors of variables: wff setvar class |
This definition is referenced by: dffr6 5538 friOLD 5541 dffr2 5544 dffr2ALT 5545 frss 5547 freq1 5550 nffr 5554 frinxp 5660 frsn 5665 f1oweALT 7788 frxp 7938 frfi 8989 fpwwe2lem11 10328 fpwwe2lem12 10329 bnj1154 32879 dffr5 33627 dfon2lem9 33673 frxp2 33718 frxp3 33724 lrrecfr 34027 finorwe 35480 fin2so 35691 fnwe2 40794 |
Copyright terms: Public domain | W3C validator |