Detailed syntax breakdown of Definition df-fr
Step | Hyp | Ref
| Expression |
1 | | cA |
. . 3
class 𝐴 |
2 | | cR |
. . 3
class 𝑅 |
3 | 1, 2 | wfr 5364 |
. 2
wff 𝑅 Fr 𝐴 |
4 | | vx |
. . . . . . 7
setvar 𝑥 |
5 | 4 | cv 1506 |
. . . . . 6
class 𝑥 |
6 | 5, 1 | wss 3831 |
. . . . 5
wff 𝑥 ⊆ 𝐴 |
7 | | c0 4180 |
. . . . . 6
class
∅ |
8 | 5, 7 | wne 2967 |
. . . . 5
wff 𝑥 ≠ ∅ |
9 | 6, 8 | wa 387 |
. . . 4
wff (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) |
10 | | vz |
. . . . . . . . 9
setvar 𝑧 |
11 | 10 | cv 1506 |
. . . . . . . 8
class 𝑧 |
12 | | vy |
. . . . . . . . 9
setvar 𝑦 |
13 | 12 | cv 1506 |
. . . . . . . 8
class 𝑦 |
14 | 11, 13, 2 | wbr 4930 |
. . . . . . 7
wff 𝑧𝑅𝑦 |
15 | 14 | wn 3 |
. . . . . 6
wff ¬
𝑧𝑅𝑦 |
16 | 15, 10, 5 | wral 3088 |
. . . . 5
wff
∀𝑧 ∈
𝑥 ¬ 𝑧𝑅𝑦 |
17 | 16, 12, 5 | wrex 3089 |
. . . 4
wff
∃𝑦 ∈
𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
18 | 9, 17 | wi 4 |
. . 3
wff ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
19 | 18, 4 | wal 1505 |
. 2
wff
∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
20 | 3, 19 | wb 198 |
1
wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |