| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fr | Structured version Visualization version GIF version | ||
| Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5592 and dffr3 6059. A class is called well-founded when the membership relation E (see df-eprel 5531) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-fr | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wfr 5581 | . 2 wff 𝑅 Fr 𝐴 |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | 5, 1 | wss 3911 | . . . . 5 wff 𝑥 ⊆ 𝐴 |
| 7 | c0 4292 | . . . . . 6 class ∅ | |
| 8 | 5, 7 | wne 2925 | . . . . 5 wff 𝑥 ≠ ∅ |
| 9 | 6, 8 | wa 395 | . . . 4 wff (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) |
| 10 | vz | . . . . . . . . 9 setvar 𝑧 | |
| 11 | 10 | cv 1539 | . . . . . . . 8 class 𝑧 |
| 12 | vy | . . . . . . . . 9 setvar 𝑦 | |
| 13 | 12 | cv 1539 | . . . . . . . 8 class 𝑦 |
| 14 | 11, 13, 2 | wbr 5102 | . . . . . . 7 wff 𝑧𝑅𝑦 |
| 15 | 14 | wn 3 | . . . . . 6 wff ¬ 𝑧𝑅𝑦 |
| 16 | 15, 10, 5 | wral 3044 | . . . . 5 wff ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
| 17 | 16, 12, 5 | wrex 3053 | . . . 4 wff ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
| 18 | 9, 17 | wi 4 | . . 3 wff ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 19 | 18, 4 | wal 1538 | . 2 wff ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 20 | 3, 19 | wb 206 | 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dffr6 5587 dffr2 5592 dffr2ALT 5593 frss 5595 freq1 5598 nffr 5604 frinxp 5714 frsn 5719 f1oweALT 7930 frxp 8082 frxp2 8100 frxp3 8107 frfi 9208 fpwwe2lem11 10570 fpwwe2lem12 10571 lrrecfr 27890 bnj1154 34982 vonf1owev 35088 dffr5 35734 dfon2lem9 35772 weiunfr 36448 finorwe 37363 fin2so 37594 fnwe2 43035 |
| Copyright terms: Public domain | W3C validator |