![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fr | Structured version Visualization version GIF version |
Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5649 and dffr3 6119. A class is called well-founded when the membership relation E (see df-eprel 5588) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-fr | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wfr 5637 | . 2 wff 𝑅 Fr 𝐴 |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 4 | cv 1535 | . . . . . 6 class 𝑥 |
6 | 5, 1 | wss 3962 | . . . . 5 wff 𝑥 ⊆ 𝐴 |
7 | c0 4338 | . . . . . 6 class ∅ | |
8 | 5, 7 | wne 2937 | . . . . 5 wff 𝑥 ≠ ∅ |
9 | 6, 8 | wa 395 | . . . 4 wff (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) |
10 | vz | . . . . . . . . 9 setvar 𝑧 | |
11 | 10 | cv 1535 | . . . . . . . 8 class 𝑧 |
12 | vy | . . . . . . . . 9 setvar 𝑦 | |
13 | 12 | cv 1535 | . . . . . . . 8 class 𝑦 |
14 | 11, 13, 2 | wbr 5147 | . . . . . . 7 wff 𝑧𝑅𝑦 |
15 | 14 | wn 3 | . . . . . 6 wff ¬ 𝑧𝑅𝑦 |
16 | 15, 10, 5 | wral 3058 | . . . . 5 wff ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
17 | 16, 12, 5 | wrex 3067 | . . . 4 wff ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
18 | 9, 17 | wi 4 | . . 3 wff ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
19 | 18, 4 | wal 1534 | . 2 wff ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
20 | 3, 19 | wb 206 | 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
Colors of variables: wff setvar class |
This definition is referenced by: dffr6 5643 friOLD 5646 dffr2 5649 dffr2ALT 5650 frss 5652 freq1 5655 nffr 5661 frinxp 5770 frsn 5775 f1oweALT 7995 frxp 8149 frxp2 8167 frxp3 8174 frfi 9318 fpwwe2lem11 10678 fpwwe2lem12 10679 lrrecfr 27990 bnj1154 34991 dffr5 35733 dfon2lem9 35772 weiunfr 36449 finorwe 37364 fin2so 37593 fnwe2 43041 |
Copyright terms: Public domain | W3C validator |