| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fr | Structured version Visualization version GIF version | ||
| Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5599 and dffr3 6070. A class is called well-founded when the membership relation E (see df-eprel 5538) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-fr | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wfr 5588 | . 2 wff 𝑅 Fr 𝐴 |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 6 | 5, 1 | wss 3914 | . . . . 5 wff 𝑥 ⊆ 𝐴 |
| 7 | c0 4296 | . . . . . 6 class ∅ | |
| 8 | 5, 7 | wne 2925 | . . . . 5 wff 𝑥 ≠ ∅ |
| 9 | 6, 8 | wa 395 | . . . 4 wff (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) |
| 10 | vz | . . . . . . . . 9 setvar 𝑧 | |
| 11 | 10 | cv 1539 | . . . . . . . 8 class 𝑧 |
| 12 | vy | . . . . . . . . 9 setvar 𝑦 | |
| 13 | 12 | cv 1539 | . . . . . . . 8 class 𝑦 |
| 14 | 11, 13, 2 | wbr 5107 | . . . . . . 7 wff 𝑧𝑅𝑦 |
| 15 | 14 | wn 3 | . . . . . 6 wff ¬ 𝑧𝑅𝑦 |
| 16 | 15, 10, 5 | wral 3044 | . . . . 5 wff ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
| 17 | 16, 12, 5 | wrex 3053 | . . . 4 wff ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
| 18 | 9, 17 | wi 4 | . . 3 wff ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 19 | 18, 4 | wal 1538 | . 2 wff ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 20 | 3, 19 | wb 206 | 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dffr6 5594 dffr2 5599 dffr2ALT 5600 frss 5602 freq1 5605 nffr 5611 frinxp 5721 frsn 5726 f1oweALT 7951 frxp 8105 frxp2 8123 frxp3 8130 frfi 9232 fpwwe2lem11 10594 fpwwe2lem12 10595 lrrecfr 27850 bnj1154 34989 vonf1owev 35095 dffr5 35741 dfon2lem9 35779 weiunfr 36455 finorwe 37370 fin2so 37601 fnwe2 43042 |
| Copyright terms: Public domain | W3C validator |