MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fr Structured version   Visualization version   GIF version

Definition df-fr 5535
Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5544 and dffr3 5996. A class is called well-founded when the membership relation E (see df-eprel 5486) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-fr (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Definition df-fr
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wfr 5532 . 2 wff 𝑅 Fr 𝐴
4 vx . . . . . . 7 setvar 𝑥
54cv 1538 . . . . . 6 class 𝑥
65, 1wss 3883 . . . . 5 wff 𝑥𝐴
7 c0 4253 . . . . . 6 class
85, 7wne 2942 . . . . 5 wff 𝑥 ≠ ∅
96, 8wa 395 . . . 4 wff (𝑥𝐴𝑥 ≠ ∅)
10 vz . . . . . . . . 9 setvar 𝑧
1110cv 1538 . . . . . . . 8 class 𝑧
12 vy . . . . . . . . 9 setvar 𝑦
1312cv 1538 . . . . . . . 8 class 𝑦
1411, 13, 2wbr 5070 . . . . . . 7 wff 𝑧𝑅𝑦
1514wn 3 . . . . . 6 wff ¬ 𝑧𝑅𝑦
1615, 10, 5wral 3063 . . . . 5 wff 𝑧𝑥 ¬ 𝑧𝑅𝑦
1716, 12, 5wrex 3064 . . . 4 wff 𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦
189, 17wi 4 . . 3 wff ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
1918, 4wal 1537 . 2 wff 𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
203, 19wb 205 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
Colors of variables: wff setvar class
This definition is referenced by:  dffr6  5538  friOLD  5541  dffr2  5544  dffr2ALT  5545  frss  5547  freq1  5550  nffr  5554  frinxp  5660  frsn  5665  f1oweALT  7788  frxp  7938  frfi  8989  fpwwe2lem11  10328  fpwwe2lem12  10329  bnj1154  32879  dffr5  33627  dfon2lem9  33673  frxp2  33718  frxp3  33724  lrrecfr  34027  finorwe  35480  fin2so  35691  fnwe2  40794
  Copyright terms: Public domain W3C validator