MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fr Structured version   Visualization version   GIF version

Definition df-fr 5566
Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5574 and dffr3 6044. A class is called well-founded when the membership relation E (see df-eprel 5513) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-fr (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧

Detailed syntax breakdown of Definition df-fr
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2wfr 5563 . 2 wff 𝑅 Fr 𝐴
4 vx . . . . . . 7 setvar 𝑥
54cv 1539 . . . . . 6 class 𝑥
65, 1wss 3899 . . . . 5 wff 𝑥𝐴
7 c0 4280 . . . . . 6 class
85, 7wne 2925 . . . . 5 wff 𝑥 ≠ ∅
96, 8wa 395 . . . 4 wff (𝑥𝐴𝑥 ≠ ∅)
10 vz . . . . . . . . 9 setvar 𝑧
1110cv 1539 . . . . . . . 8 class 𝑧
12 vy . . . . . . . . 9 setvar 𝑦
1312cv 1539 . . . . . . . 8 class 𝑦
1411, 13, 2wbr 5088 . . . . . . 7 wff 𝑧𝑅𝑦
1514wn 3 . . . . . 6 wff ¬ 𝑧𝑅𝑦
1615, 10, 5wral 3044 . . . . 5 wff 𝑧𝑥 ¬ 𝑧𝑅𝑦
1716, 12, 5wrex 3053 . . . 4 wff 𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦
189, 17wi 4 . . 3 wff ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
1918, 4wal 1538 . 2 wff 𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
203, 19wb 206 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
Colors of variables: wff setvar class
This definition is referenced by:  dffr6  5569  dffr2  5574  dffr2ALT  5575  frss  5577  freq1  5580  nffr  5586  frinxp  5696  frsn  5701  f1oweALT  7898  frxp  8050  frxp2  8068  frxp3  8075  frfi  9163  fpwwe2lem11  10523  fpwwe2lem12  10524  lrrecfr  27840  bnj1154  34979  vonf1owev  35098  dffr5  35744  dfon2lem9  35782  weiunfr  36458  finorwe  37373  fin2so  37604  fnwe2  43043
  Copyright terms: Public domain W3C validator