| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fr | Structured version Visualization version GIF version | ||
| Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5580 and dffr3 6053. A class is called well-founded when the membership relation E (see df-eprel 5519) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-fr | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | wfr 5569 | . 2 wff 𝑅 Fr 𝐴 |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 4 | cv 1540 | . . . . . 6 class 𝑥 |
| 6 | 5, 1 | wss 3897 | . . . . 5 wff 𝑥 ⊆ 𝐴 |
| 7 | c0 4282 | . . . . . 6 class ∅ | |
| 8 | 5, 7 | wne 2928 | . . . . 5 wff 𝑥 ≠ ∅ |
| 9 | 6, 8 | wa 395 | . . . 4 wff (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) |
| 10 | vz | . . . . . . . . 9 setvar 𝑧 | |
| 11 | 10 | cv 1540 | . . . . . . . 8 class 𝑧 |
| 12 | vy | . . . . . . . . 9 setvar 𝑦 | |
| 13 | 12 | cv 1540 | . . . . . . . 8 class 𝑦 |
| 14 | 11, 13, 2 | wbr 5093 | . . . . . . 7 wff 𝑧𝑅𝑦 |
| 15 | 14 | wn 3 | . . . . . 6 wff ¬ 𝑧𝑅𝑦 |
| 16 | 15, 10, 5 | wral 3047 | . . . . 5 wff ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
| 17 | 16, 12, 5 | wrex 3056 | . . . 4 wff ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
| 18 | 9, 17 | wi 4 | . . 3 wff ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 19 | 18, 4 | wal 1539 | . 2 wff ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
| 20 | 3, 19 | wb 206 | 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dffr6 5575 dffr2 5580 dffr2ALT 5581 frss 5583 freq1 5586 nffr 5592 frinxp 5702 frsn 5707 f1oweALT 7910 frxp 8062 frxp2 8080 frxp3 8087 frfi 9175 fpwwe2lem11 10538 fpwwe2lem12 10539 lrrecfr 27892 bnj1154 35018 vonf1owev 35159 dffr5 35805 dfon2lem9 35840 weiunfr 36518 finorwe 37433 fin2so 37653 fnwe2 43151 |
| Copyright terms: Public domain | W3C validator |