![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-fr | Structured version Visualization version GIF version |
Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5661 and dffr3 6129. A class is called well-founded when the membership relation E (see df-eprel 5599) is well-founded on it, that is, 𝐴 is well-founded if E Fr 𝐴 (some sources request that the membership relation be well-founded on its transitive closure). (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
df-fr | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cR | . . 3 class 𝑅 | |
3 | 1, 2 | wfr 5649 | . 2 wff 𝑅 Fr 𝐴 |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 4 | cv 1536 | . . . . . 6 class 𝑥 |
6 | 5, 1 | wss 3976 | . . . . 5 wff 𝑥 ⊆ 𝐴 |
7 | c0 4352 | . . . . . 6 class ∅ | |
8 | 5, 7 | wne 2946 | . . . . 5 wff 𝑥 ≠ ∅ |
9 | 6, 8 | wa 395 | . . . 4 wff (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) |
10 | vz | . . . . . . . . 9 setvar 𝑧 | |
11 | 10 | cv 1536 | . . . . . . . 8 class 𝑧 |
12 | vy | . . . . . . . . 9 setvar 𝑦 | |
13 | 12 | cv 1536 | . . . . . . . 8 class 𝑦 |
14 | 11, 13, 2 | wbr 5166 | . . . . . . 7 wff 𝑧𝑅𝑦 |
15 | 14 | wn 3 | . . . . . 6 wff ¬ 𝑧𝑅𝑦 |
16 | 15, 10, 5 | wral 3067 | . . . . 5 wff ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
17 | 16, 12, 5 | wrex 3076 | . . . 4 wff ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 |
18 | 9, 17 | wi 4 | . . 3 wff ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
19 | 18, 4 | wal 1535 | . 2 wff ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) |
20 | 3, 19 | wb 206 | 1 wff (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
Colors of variables: wff setvar class |
This definition is referenced by: dffr6 5655 friOLD 5658 dffr2 5661 dffr2ALT 5662 frss 5664 freq1 5667 nffr 5673 frinxp 5782 frsn 5787 f1oweALT 8013 frxp 8167 frxp2 8185 frxp3 8192 frfi 9349 fpwwe2lem11 10710 fpwwe2lem12 10711 lrrecfr 27994 bnj1154 34975 dffr5 35716 dfon2lem9 35755 weiunfr 36433 finorwe 37348 fin2so 37567 fnwe2 43010 |
Copyright terms: Public domain | W3C validator |