Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > freq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
freq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3974 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | frss 5547 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Fr 𝐴 → 𝑅 Fr 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 → 𝑅 Fr 𝐵)) |
4 | eqimss 3973 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
5 | frss 5547 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) |
7 | 3, 6 | impbid 211 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ⊆ wss 3883 Fr wfr 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-fr 5535 |
This theorem is referenced by: weeq2 5569 frsn 5665 f1oweALT 7788 frfi 8989 freq12d 40780 ifr0 41957 |
Copyright terms: Public domain | W3C validator |