MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  freq2 Structured version   Visualization version   GIF version

Theorem freq2 5646
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
freq2 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))

Proof of Theorem freq2
StepHypRef Expression
1 eqimss2 4040 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 frss 5642 . . 3 (𝐵𝐴 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
4 eqimss 4039 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 frss 5642 . . 3 (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
73, 6impbid 211 1 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wss 3947   Fr wfr 5627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3954  df-ss 3964  df-fr 5630
This theorem is referenced by:  weeq2  5664  frsn  5761  f1oweALT  7955  frfi  9284  freq12d  41766  ifr0  43194
  Copyright terms: Public domain W3C validator