MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  freq2 Structured version   Visualization version   GIF version

Theorem freq2 5668
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
freq2 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))

Proof of Theorem freq2
StepHypRef Expression
1 eqimss2 4068 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 frss 5664 . . 3 (𝐵𝐴 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
31, 2syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
4 eqimss 4067 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 frss 5664 . . 3 (𝐴𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
64, 5syl 17 . 2 (𝐴 = 𝐵 → (𝑅 Fr 𝐵𝑅 Fr 𝐴))
73, 6impbid 212 1 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wss 3976   Fr wfr 5649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993  df-fr 5652
This theorem is referenced by:  freq12d  5669  weeq2  5688  frsn  5787  f1oweALT  8013  frfi  9349  ifr0  44419
  Copyright terms: Public domain W3C validator