![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > freq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
freq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3947 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | frss 5413 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Fr 𝐴 → 𝑅 Fr 𝐵)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 → 𝑅 Fr 𝐵)) |
4 | eqimss 3946 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
5 | frss 5413 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐵 → 𝑅 Fr 𝐴)) |
7 | 3, 6 | impbid 213 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 ⊆ wss 3861 Fr wfr 5402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-ext 2768 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-clab 2775 df-cleq 2787 df-clel 2862 df-in 3868 df-ss 3876 df-fr 5405 |
This theorem is referenced by: weeq2 5435 frsn 5528 f1oweALT 7532 frfi 8612 freq12d 39137 ifr0 40334 |
Copyright terms: Public domain | W3C validator |