Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > weeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for well-orders. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
Ref | Expression |
---|---|
weeq12d.l | ⊢ (𝜑 → 𝑅 = 𝑆) |
weeq12d.r | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
weeq12d | ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weeq12d.l | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
2 | weeq1 5568 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
4 | weeq12d.r | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | weeq2 5569 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑆 We 𝐴 ↔ 𝑆 We 𝐵)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 We 𝐴 ↔ 𝑆 We 𝐵)) |
7 | 3, 6 | bitrd 278 | 1 ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 We wwe 5534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 |
This theorem is referenced by: fnwe2lem1 40791 aomclem1 40795 aomclem4 40798 aomclem5 40799 aomclem6 40800 |
Copyright terms: Public domain | W3C validator |