MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  weeq12d Structured version   Visualization version   GIF version

Theorem weeq12d 5605
Description: Equality deduction for well-orderings. (Contributed by Stefan O'Rear, 19-Jan-2015.) (Proof shortened by Matthew House, 10-Sep-2025.)
Hypotheses
Ref Expression
weeq12d.1 (𝜑𝑅 = 𝑆)
weeq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
weeq12d (𝜑 → (𝑅 We 𝐴𝑆 We 𝐵))

Proof of Theorem weeq12d
StepHypRef Expression
1 weeq12d.1 . 2 (𝜑𝑅 = 𝑆)
2 weeq12d.2 . 2 (𝜑𝐴 = 𝐵)
3 weeq1 5603 . . 3 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
4 weeq2 5604 . . 3 (𝐴 = 𝐵 → (𝑆 We 𝐴𝑆 We 𝐵))
53, 4sylan9bb 509 . 2 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑅 We 𝐴𝑆 We 𝐵))
61, 2, 5syl2anc 584 1 (𝜑 → (𝑅 We 𝐴𝑆 We 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541   We wwe 5568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-ex 1781  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-ss 3919  df-br 5092  df-po 5524  df-so 5525  df-fr 5569  df-we 5571
This theorem is referenced by:  hartogslem1  9428  fpwwe2cbv  10518  fpwwe2lem2  10520  fpwwe2lem4  10522  fpwwecbv  10532  fpwwelem  10533  canthwelem  10538  canthwe  10539  pwfseqlem4  10550  fnwe2lem1  43082  aomclem1  43086  aomclem4  43089  aomclem5  43090  aomclem6  43091
  Copyright terms: Public domain W3C validator