Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weeq12d Structured version   Visualization version   GIF version

Theorem weeq12d 42342
Description: Equality deduction for well-orders. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
weeq12d.l (𝜑𝑅 = 𝑆)
weeq12d.r (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
weeq12d (𝜑 → (𝑅 We 𝐴𝑆 We 𝐵))

Proof of Theorem weeq12d
StepHypRef Expression
1 weeq12d.l . . 3 (𝜑𝑅 = 𝑆)
2 weeq1 5657 . . 3 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
31, 2syl 17 . 2 (𝜑 → (𝑅 We 𝐴𝑆 We 𝐴))
4 weeq12d.r . . 3 (𝜑𝐴 = 𝐵)
5 weeq2 5658 . . 3 (𝐴 = 𝐵 → (𝑆 We 𝐴𝑆 We 𝐵))
64, 5syl 17 . 2 (𝜑 → (𝑆 We 𝐴𝑆 We 𝐵))
73, 6bitrd 279 1 (𝜑 → (𝑅 We 𝐴𝑆 We 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533   We wwe 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-v 3470  df-in 3950  df-ss 3960  df-br 5142  df-po 5581  df-so 5582  df-fr 5624  df-we 5626
This theorem is referenced by:  fnwe2lem1  42352  aomclem1  42356  aomclem4  42359  aomclem5  42360  aomclem6  42361
  Copyright terms: Public domain W3C validator