Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weeq12d Structured version   Visualization version   GIF version

Theorem weeq12d 40860
Description: Equality deduction for well-orders. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
weeq12d.l (𝜑𝑅 = 𝑆)
weeq12d.r (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
weeq12d (𝜑 → (𝑅 We 𝐴𝑆 We 𝐵))

Proof of Theorem weeq12d
StepHypRef Expression
1 weeq12d.l . . 3 (𝜑𝑅 = 𝑆)
2 weeq1 5577 . . 3 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
31, 2syl 17 . 2 (𝜑 → (𝑅 We 𝐴𝑆 We 𝐴))
4 weeq12d.r . . 3 (𝜑𝐴 = 𝐵)
5 weeq2 5578 . . 3 (𝐴 = 𝐵 → (𝑆 We 𝐴𝑆 We 𝐵))
64, 5syl 17 . 2 (𝜑 → (𝑆 We 𝐴𝑆 We 𝐵))
73, 6bitrd 278 1 (𝜑 → (𝑅 We 𝐴𝑆 We 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542   We wwe 5543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-v 3433  df-in 3899  df-ss 3909  df-br 5080  df-po 5503  df-so 5504  df-fr 5544  df-we 5546
This theorem is referenced by:  fnwe2lem1  40870  aomclem1  40874  aomclem4  40877  aomclem5  40878  aomclem6  40879
  Copyright terms: Public domain W3C validator