| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > weeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for well-orderings. (Contributed by Stefan O'Rear, 19-Jan-2015.) (Proof shortened by Matthew House, 10-Sep-2025.) |
| Ref | Expression |
|---|---|
| weeq12d.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
| weeq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| weeq12d | ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weeq12d.1 | . 2 ⊢ (𝜑 → 𝑅 = 𝑆) | |
| 2 | weeq12d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | weeq1 5646 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) | |
| 4 | weeq2 5647 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑆 We 𝐴 ↔ 𝑆 We 𝐵)) | |
| 5 | 3, 4 | sylan9bb 509 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
| 6 | 1, 2, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 We wwe 5610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-ex 1780 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-ss 3948 df-br 5125 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 |
| This theorem is referenced by: hartogslem1 9561 fpwwe2cbv 10649 fpwwe2lem2 10651 fpwwe2lem4 10653 fpwwecbv 10663 fpwwelem 10664 canthwelem 10669 canthwe 10670 pwfseqlem4 10681 fnwe2lem1 43041 aomclem1 43045 aomclem4 43048 aomclem5 43049 aomclem6 43050 |
| Copyright terms: Public domain | W3C validator |