Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  weeq12d Structured version   Visualization version   GIF version

Theorem weeq12d 41396
Description: Equality deduction for well-orders. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
weeq12d.l (𝜑𝑅 = 𝑆)
weeq12d.r (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
weeq12d (𝜑 → (𝑅 We 𝐴𝑆 We 𝐵))

Proof of Theorem weeq12d
StepHypRef Expression
1 weeq12d.l . . 3 (𝜑𝑅 = 𝑆)
2 weeq1 5626 . . 3 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
31, 2syl 17 . 2 (𝜑 → (𝑅 We 𝐴𝑆 We 𝐴))
4 weeq12d.r . . 3 (𝜑𝐴 = 𝐵)
5 weeq2 5627 . . 3 (𝐴 = 𝐵 → (𝑆 We 𝐴𝑆 We 𝐵))
64, 5syl 17 . 2 (𝜑 → (𝑆 We 𝐴𝑆 We 𝐵))
73, 6bitrd 279 1 (𝜑 → (𝑅 We 𝐴𝑆 We 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542   We wwe 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-v 3450  df-in 3922  df-ss 3932  df-br 5111  df-po 5550  df-so 5551  df-fr 5593  df-we 5595
This theorem is referenced by:  fnwe2lem1  41406  aomclem1  41410  aomclem4  41413  aomclem5  41414  aomclem6  41415
  Copyright terms: Public domain W3C validator