![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > weeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for well-orders. (Contributed by Stefan O'Rear, 19-Jan-2015.) |
Ref | Expression |
---|---|
weeq12d.l | ⊢ (𝜑 → 𝑅 = 𝑆) |
weeq12d.r | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
weeq12d | ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weeq12d.l | . . 3 ⊢ (𝜑 → 𝑅 = 𝑆) | |
2 | weeq1 5663 | . . 3 ⊢ (𝑅 = 𝑆 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐴)) |
4 | weeq12d.r | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | weeq2 5664 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑆 We 𝐴 ↔ 𝑆 We 𝐵)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝑆 We 𝐴 ↔ 𝑆 We 𝐵)) |
7 | 3, 6 | bitrd 278 | 1 ⊢ (𝜑 → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 We wwe 5629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-v 3476 df-in 3954 df-ss 3964 df-br 5148 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 |
This theorem is referenced by: fnwe2lem1 41777 aomclem1 41781 aomclem4 41784 aomclem5 41785 aomclem6 41786 |
Copyright terms: Public domain | W3C validator |