Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > freq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
freq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 5079 | . . . . . 6 ⊢ (𝑅 = 𝑆 → (𝑧𝑅𝑦 ↔ 𝑧𝑆𝑦)) | |
2 | 1 | notbid 317 | . . . . 5 ⊢ (𝑅 = 𝑆 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑆𝑦)) |
3 | 2 | rexralbidv 3208 | . . . 4 ⊢ (𝑅 = 𝑆 → (∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑆𝑦)) |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑅 = 𝑆 → (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑆𝑦))) |
5 | 4 | albidv 1919 | . 2 ⊢ (𝑅 = 𝑆 → (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑆𝑦))) |
6 | df-fr 5546 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) | |
7 | df-fr 5546 | . 2 ⊢ (𝑆 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑆𝑦)) | |
8 | 5, 6, 7 | 3bitr4g 313 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1535 = wceq 1537 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⊆ wss 3889 ∅c0 4259 class class class wbr 5077 Fr wfr 5543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1778 df-cleq 2725 df-clel 2811 df-ral 3060 df-rex 3069 df-br 5078 df-fr 5546 |
This theorem is referenced by: weeq1 5579 freq12d 40888 |
Copyright terms: Public domain | W3C validator |