| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > freq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| freq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq 5126 | . . . . . 6 ⊢ (𝑅 = 𝑆 → (𝑧𝑅𝑦 ↔ 𝑧𝑆𝑦)) | |
| 2 | 1 | notbid 318 | . . . . 5 ⊢ (𝑅 = 𝑆 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑆𝑦)) |
| 3 | 2 | rexralbidv 3211 | . . . 4 ⊢ (𝑅 = 𝑆 → (∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑆𝑦)) |
| 4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑅 = 𝑆 → (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑆𝑦))) |
| 5 | 4 | albidv 1920 | . 2 ⊢ (𝑅 = 𝑆 → (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑆𝑦))) |
| 6 | df-fr 5611 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) | |
| 7 | df-fr 5611 | . 2 ⊢ (𝑆 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑆𝑦)) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 Fr wfr 5608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-br 5125 df-fr 5611 |
| This theorem is referenced by: freq12d 5628 weeq1 5646 |
| Copyright terms: Public domain | W3C validator |