MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  freq1 Structured version   Visualization version   GIF version

Theorem freq1 5632
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
freq1 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))

Proof of Theorem freq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5125 . . . . . 6 (𝑅 = 𝑆 → (𝑧𝑅𝑦𝑧𝑆𝑦))
21notbid 318 . . . . 5 (𝑅 = 𝑆 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑆𝑦))
32rexralbidv 3210 . . . 4 (𝑅 = 𝑆 → (∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑆𝑦))
43imbi2d 340 . . 3 (𝑅 = 𝑆 → (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑆𝑦)))
54albidv 1919 . 2 (𝑅 = 𝑆 → (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑆𝑦)))
6 df-fr 5617 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
7 df-fr 5617 . 2 (𝑆 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑆𝑦))
85, 6, 73bitr4g 314 1 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wne 2931  wral 3050  wrex 3059  wss 3931  c0 4313   class class class wbr 5123   Fr wfr 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-br 5124  df-fr 5617
This theorem is referenced by:  freq12d  5634  weeq1  5652
  Copyright terms: Public domain W3C validator