MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  freq1 Structured version   Visualization version   GIF version

Theorem freq1 5498
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
Assertion
Ref Expression
freq1 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))

Proof of Theorem freq1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5041 . . . . . 6 (𝑅 = 𝑆 → (𝑧𝑅𝑦𝑧𝑆𝑦))
21notbid 321 . . . . 5 (𝑅 = 𝑆 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑆𝑦))
32rexralbidv 3287 . . . 4 (𝑅 = 𝑆 → (∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑆𝑦))
43imbi2d 344 . . 3 (𝑅 = 𝑆 → (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑆𝑦)))
54albidv 1922 . 2 (𝑅 = 𝑆 → (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑆𝑦)))
6 df-fr 5487 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
7 df-fr 5487 . 2 (𝑆 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑆𝑦))
85, 6, 73bitr4g 317 1 (𝑅 = 𝑆 → (𝑅 Fr 𝐴𝑆 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wne 3007  wral 3126  wrex 3127  wss 3910  c0 4266   class class class wbr 5039   Fr wfr 5484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2793
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-cleq 2814  df-clel 2892  df-ral 3131  df-rex 3132  df-br 5040  df-fr 5487
This theorem is referenced by:  weeq1  5516  freq12d  39780
  Copyright terms: Public domain W3C validator