MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsb Structured version   Visualization version   GIF version

Theorem hbsb 2591
Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by NM, 12-Aug-1993.)
Hypothesis
Ref Expression
hbsb.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
hbsb ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem hbsb
StepHypRef Expression
1 hbsb.1 . . . 4 (𝜑 → ∀𝑧𝜑)
21nf5i 2179 . . 3 𝑧𝜑
32nfsb 2590 . 2 𝑧[𝑦 / 𝑥]𝜑
43nf5ri 2219 1 ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1629  [wsb 2049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050
This theorem is referenced by:  hbab  2762  hblem  2880
  Copyright terms: Public domain W3C validator