Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsb Structured version   Visualization version   GIF version

Theorem hbsb 2544
 Description: If 𝑧 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. Usage of this theorem is discouraged because it depends on ax-13 2379. Use the weaker hbsbw 2173 when possible. (Contributed by NM, 12-Aug-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
hbsb.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
hbsb ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem hbsb
StepHypRef Expression
1 hbsb.1 . . . 4 (𝜑 → ∀𝑧𝜑)
21nf5i 2147 . . 3 𝑧𝜑
32nfsb 2542 . 2 𝑧[𝑦 / 𝑥]𝜑
43nf5ri 2193 1 ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1536  [wsb 2069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by:  hbabg  2788  hblemg  2921
 Copyright terms: Public domain W3C validator