MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbsb Structured version   Visualization version   GIF version

Theorem hbsb 2529
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. (Contributed by NM, 12-Aug-1993.) Usage of this theorem is discouraged because it depends on ax-13 2372. Use hbsbw 2169 instead. (New usage is discouraged.)
Hypothesis
Ref Expression
hbsb.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
hbsb ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem hbsb
StepHypRef Expression
1 hbsb.1 . . . 4 (𝜑 → ∀𝑧𝜑)
21nf5i 2142 . . 3 𝑧𝜑
32nfsb 2527 . 2 𝑧[𝑦 / 𝑥]𝜑
43nf5ri 2188 1 ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  hbabg  2727  hblemg  2871
  Copyright terms: Public domain W3C validator