Description: Virtual deduction proof of nfra2 3154. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's
StepSelector to pick all remaining steps of the Metamath proof.
1:: | ⊢ (∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑 →
∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| 2:: | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔
∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| 3:1,2,?: e00 42277 | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 →
∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| 4:2: | ⊢ ∀𝑦(∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔
∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| 5:4,?: e0a 42281 | ⊢ (∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔
∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑)
| qed:3,5,?: e00 42277 | ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 →
∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑)
|
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is
discouraged.) (New usage is discouraged.) |