Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbra1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Proof shortened by Wolf Lammen, 7-Dec-2019.) |
Ref | Expression |
---|---|
hbra1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 3263 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | |
2 | 1 | nf5ri 2187 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1781 df-nf 1785 df-ral 3062 |
This theorem is referenced by: bnj1095 33060 bnj1309 33301 mpobi123f 36476 hbra2VD 42853 tratrbVD 42854 ssralv2VD 42859 |
Copyright terms: Public domain | W3C validator |