MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbra1 Structured version   Visualization version   GIF version

Theorem hbra1 3269
Description: The setvar 𝑥 is not free in 𝑥𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Proof shortened by Wolf Lammen, 7-Dec-2019.)
Assertion
Ref Expression
hbra1 (∀𝑥𝐴 𝜑 → ∀𝑥𝑥𝐴 𝜑)

Proof of Theorem hbra1
StepHypRef Expression
1 nfra1 3256 . 2 𝑥𝑥𝐴 𝜑
21nf5ri 2198 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1781  df-nf 1785  df-ral 3048
This theorem is referenced by:  bnj1095  34793  bnj1309  35034  mpobi123f  38210  hbra2VD  44900  tratrbVD  44901  ssralv2VD  44906
  Copyright terms: Public domain W3C validator