| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbra1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Proof shortened by Wolf Lammen, 7-Dec-2019.) |
| Ref | Expression |
|---|---|
| hbra1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 3256 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | |
| 2 | 1 | nf5ri 2198 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 df-ral 3048 |
| This theorem is referenced by: bnj1095 34793 bnj1309 35034 mpobi123f 38210 hbra2VD 44900 tratrbVD 44901 ssralv2VD 44906 |
| Copyright terms: Public domain | W3C validator |