Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbra1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∀𝑥 ∈ 𝐴𝜑. (Contributed by NM, 18-Oct-1996.) (Proof shortened by Wolf Lammen, 7-Dec-2019.) |
Ref | Expression |
---|---|
hbra1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 3142 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | |
2 | 1 | nf5ri 2191 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 df-ral 3068 |
This theorem is referenced by: bnj1095 32661 bnj1309 32902 mpobi123f 36247 hbra2VD 42369 tratrbVD 42370 ssralv2VD 42375 |
Copyright terms: Public domain | W3C validator |