MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2 Structured version   Visualization version   GIF version

Theorem nfra2 3127
Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 39856. Contributed by Alan Sare 31-Dec-2011. (Contributed by NM, 31-Dec-2011.)
Assertion
Ref Expression
nfra2 𝑦𝑥𝐴𝑦𝐵 𝜑
Distinct variable group:   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem nfra2
StepHypRef Expression
1 nfcv 2941 . 2 𝑦𝐴
2 nfra1 3122 . 2 𝑦𝑦𝐵 𝜑
31, 2nfral 3126 1 𝑦𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff setvar class
Syntax hints:  wnf 1879  wral 3089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094
This theorem is referenced by:  ralcom2  3285  invdisj  4829  reusv3  5075  dedekind  10490  dedekindle  10491  mreexexd  16623  gsummatr01lem4  20791  ordtconnlem1  30486  bnj1379  31418  tratrb  39522  islptre  40595  sprsymrelfo  42546
  Copyright terms: Public domain W3C validator