MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfra2 Structured version   Visualization version   GIF version

Theorem nfra2 3343
Description: Similar to Lemma 24 of [Monk2] p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD 44979. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker nfra2w 3269 when possible. (Contributed by Alan Sare, 31-Dec-2011.) (New usage is discouraged.)
Assertion
Ref Expression
nfra2 𝑦𝑥𝐴𝑦𝐵 𝜑
Distinct variable group:   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem nfra2
StepHypRef Expression
1 nfcv 2895 . 2 𝑦𝐴
2 nfra1 3257 . 2 𝑦𝑦𝐵 𝜑
31, 2nfral 3341 1 𝑦𝑥𝐴𝑦𝐵 𝜑
Colors of variables: wff setvar class
Syntax hints:  wnf 1784  wral 3048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-13 2374  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049
This theorem is referenced by:  ralcom2  3344
  Copyright terms: Public domain W3C validator