![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfraldw | Structured version Visualization version GIF version |
Description: Deduction version of nfralw 3306. Version of nfrald 3366 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by NM, 15-Feb-2013.) Avoid ax-9 2114, ax-ext 2701. (Revised by Gino Giotto, 24-Sep-2024.) |
Ref | Expression |
---|---|
nfraldw.1 | ⊢ Ⅎ𝑦𝜑 |
nfraldw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfraldw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfraldw | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3060 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
2 | nfraldw.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfraldw.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | 3 | nfcrd 2890 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
5 | nfraldw.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
6 | 4, 5 | nfimd 1895 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓)) |
7 | 2, 6 | nfald 2319 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
8 | 1, 7 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1783 ∈ wcel 2104 Ⅎwnfc 2881 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-10 2135 ax-11 2152 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ex 1780 df-nf 1784 df-clel 2808 df-nfc 2883 df-ral 3060 |
This theorem is referenced by: nfrexdw 3305 nfralwOLD 3307 nfttrcld 9707 |
Copyright terms: Public domain | W3C validator |