| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfraldw | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfralw 3279. Version of nfrald 3338 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 15-Feb-2013.) Avoid ax-9 2121, ax-ext 2703. (Revised by GG, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| nfraldw.1 | ⊢ Ⅎ𝑦𝜑 |
| nfraldw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfraldw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfraldw | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3048 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
| 2 | nfraldw.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfraldw.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | 3 | nfcrd 2888 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 5 | nfraldw.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 6 | 4, 5 | nfimd 1895 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓)) |
| 7 | 2, 6 | nfald 2329 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
| 8 | 1, 7 | nfxfrd 1855 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-clel 2806 df-nfc 2881 df-ral 3048 |
| This theorem is referenced by: nfrexdw 3278 nfttrcld 9600 nfchnd 18517 |
| Copyright terms: Public domain | W3C validator |