![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfraldw | Structured version Visualization version GIF version |
Description: Deduction version of nfralw 3309. Version of nfrald 3370 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by NM, 15-Feb-2013.) Avoid ax-9 2116, ax-ext 2706. (Revised by GG, 24-Sep-2024.) |
Ref | Expression |
---|---|
nfraldw.1 | ⊢ Ⅎ𝑦𝜑 |
nfraldw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfraldw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfraldw | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3060 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
2 | nfraldw.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfraldw.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | 3 | nfcrd 2897 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
5 | nfraldw.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
6 | 4, 5 | nfimd 1892 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓)) |
7 | 2, 6 | nfald 2327 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
8 | 1, 7 | nfxfrd 1851 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 Ⅎwnf 1780 ∈ wcel 2106 Ⅎwnfc 2888 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-10 2139 ax-11 2155 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-nf 1781 df-clel 2814 df-nfc 2890 df-ral 3060 |
This theorem is referenced by: nfrexdw 3308 nfralwOLD 3310 nfttrcld 9748 |
Copyright terms: Public domain | W3C validator |