MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htthlem Structured version   Visualization version   GIF version

Theorem htthlem 30846
Description: Lemma for htth 30847. The collection 𝐾, which consists of functions 𝐹(𝑧)(𝑤) = ⟨𝑤𝑇(𝑧)⟩ = ⟨𝑇(𝑤) ∣ 𝑧 for each 𝑧 in the unit ball, is a collection of bounded linear functions by ipblnfi 30784, so by the Uniform Boundedness theorem ubth 30802, there is a uniform bound 𝑦 on 𝐹(𝑥) ∥ for all 𝑥 in the unit ball. Then 𝑇(𝑥) ∣ ↑2 = ⟨𝑇(𝑥) ∣ 𝑇(𝑥)⟩ = 𝐹(𝑥)( 𝑇(𝑥)) ≤ 𝑦𝑇(𝑥) ∣, so 𝑇(𝑥) ∣ ≤ 𝑦 and 𝑇 is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1 𝑋 = (BaseSet‘𝑈)
htth.2 𝑃 = (·𝑖OLD𝑈)
htth.3 𝐿 = (𝑈 LnOp 𝑈)
htth.4 𝐵 = (𝑈 BLnOp 𝑈)
htthlem.5 𝑁 = (normCV𝑈)
htthlem.6 𝑈 ∈ CHilOLD
htthlem.7 𝑊 = ⟨⟨ + , · ⟩, abs⟩
htthlem.8 (𝜑𝑇𝐿)
htthlem.9 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
htthlem.10 𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))
htthlem.11 𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
Assertion
Ref Expression
htthlem (𝜑𝑇𝐵)
Distinct variable groups:   𝑦,𝑤,𝐹   𝑥,𝑤,𝑧,𝐾,𝑦   𝑤,𝑁,𝑥,𝑦,𝑧   𝑤,𝑃,𝑧   𝑤,𝑊,𝑥,𝑦,𝑧   𝜑,𝑤,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧   𝑤,𝑈,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦)   𝐹(𝑥,𝑧)   𝐿(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem htthlem
StepHypRef Expression
1 htthlem.8 . 2 (𝜑𝑇𝐿)
2 htthlem.6 . . . . . . . . . 10 𝑈 ∈ CHilOLD
32hlnvi 30821 . . . . . . . . 9 𝑈 ∈ NrmCVec
4 htth.1 . . . . . . . . . . . . 13 𝑋 = (BaseSet‘𝑈)
5 htth.3 . . . . . . . . . . . . 13 𝐿 = (𝑈 LnOp 𝑈)
64, 4, 5lnof 30684 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑋)
73, 3, 6mp3an12 1453 . . . . . . . . . . 11 (𝑇𝐿𝑇:𝑋𝑋)
81, 7syl 17 . . . . . . . . . 10 (𝜑𝑇:𝑋𝑋)
98ffvelcdmda 7056 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑇𝑥) ∈ 𝑋)
10 htthlem.5 . . . . . . . . . 10 𝑁 = (normCV𝑈)
114, 10nvcl 30590 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
123, 9, 11sylancr 587 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
138ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → (𝑇𝑧) ∈ 𝑋)
14 htth.2 . . . . . . . . . . . . . . . . 17 𝑃 = (·𝑖OLD𝑈)
15 hlph 30818 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
162, 15ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑈 ∈ CPreHilOLD
17 htthlem.7 . . . . . . . . . . . . . . . . 17 𝑊 = ⟨⟨ + , · ⟩, abs⟩
18 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
19 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧)))
204, 14, 16, 17, 18, 19ipblnfi 30784 . . . . . . . . . . . . . . . 16 ((𝑇𝑧) ∈ 𝑋 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) ∈ (𝑈 BLnOp 𝑊))
2113, 20syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑋) → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) ∈ (𝑈 BLnOp 𝑊))
22 htthlem.10 . . . . . . . . . . . . . . 15 𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))
2321, 22fmptd 7086 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑋⟶(𝑈 BLnOp 𝑊))
2423ffund 6692 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
2524adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → Fun 𝐹)
26 id 22 . . . . . . . . . . . . 13 (𝑤𝐾𝑤𝐾)
27 htthlem.11 . . . . . . . . . . . . 13 𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
2826, 27eleqtrdi 2838 . . . . . . . . . . . 12 (𝑤𝐾𝑤 ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}))
29 fvelima 6926 . . . . . . . . . . . 12 ((Fun 𝐹𝑤 ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})) → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤)
3025, 28, 29syl2an 596 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑤𝐾) → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤)
3130ex 412 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑤𝐾 → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤))
32 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑁𝑧) = (𝑁𝑦))
3332breq1d 5117 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑁𝑧) ≤ 1 ↔ (𝑁𝑦) ≤ 1))
3433elrab 3659 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} ↔ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1))
35 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → (𝑇𝑧) = (𝑇𝑦))
3635oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (𝑤𝑃(𝑇𝑧)) = (𝑤𝑃(𝑇𝑦)))
3736mpteq2dv 5201 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))))
3837, 22, 4mptfvmpt 7202 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑋 → (𝐹𝑦) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))))
3938fveq1d 6860 . . . . . . . . . . . . . . . . . 18 (𝑦𝑋 → ((𝐹𝑦)‘𝑥) = ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))‘𝑥))
40 oveq1 7394 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → (𝑤𝑃(𝑇𝑦)) = (𝑥𝑃(𝑇𝑦)))
41 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))
42 ovex 7420 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑃(𝑇𝑦)) ∈ V
4340, 41, 42fvmpt 6968 . . . . . . . . . . . . . . . . . 18 (𝑥𝑋 → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))‘𝑥) = (𝑥𝑃(𝑇𝑦)))
4439, 43sylan9eqr 2786 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑦𝑋) → ((𝐹𝑦)‘𝑥) = (𝑥𝑃(𝑇𝑦)))
4544ad2ant2lr 748 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝐹𝑦)‘𝑥) = (𝑥𝑃(𝑇𝑦)))
46 htthlem.9 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
47 rsp2 3254 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) → ((𝑥𝑋𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)))
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑥𝑋𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)))
4948impl 455 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
5049adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
5145, 50eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝐹𝑦)‘𝑥) = ((𝑇𝑥)𝑃𝑦))
5251fveq2d 6862 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝐹𝑦)‘𝑥)) = (abs‘((𝑇𝑥)𝑃𝑦)))
53 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑦𝑋 ∧ (𝑁𝑦) ≤ 1) → 𝑦𝑋)
544, 14dipcl 30641 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋𝑦𝑋) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
553, 54mp3an1 1450 . . . . . . . . . . . . . . . . 17 (((𝑇𝑥) ∈ 𝑋𝑦𝑋) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
569, 53, 55syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
5756abscld 15405 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ∈ ℝ)
5812adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
594, 10nvcl 30590 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
603, 59mpan 690 . . . . . . . . . . . . . . . . 17 (𝑦𝑋 → (𝑁𝑦) ∈ ℝ)
6160ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁𝑦) ∈ ℝ)
6258, 61remulcld 11204 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ∈ ℝ)
634, 10, 14, 16sii 30783 . . . . . . . . . . . . . . . 16 (((𝑇𝑥) ∈ 𝑋𝑦𝑋) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)))
649, 53, 63syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)))
65 1red 11175 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → 1 ∈ ℝ)
664, 10nvge0 30602 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝑇𝑥)))
673, 9, 66sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑋) → 0 ≤ (𝑁‘(𝑇𝑥)))
6812, 67jca 511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥))))
6968adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥))))
70 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁𝑦) ≤ 1)
71 lemul2a 12037 . . . . . . . . . . . . . . . . 17 ((((𝑁𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥)))) ∧ (𝑁𝑦) ≤ 1) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · 1))
7261, 65, 69, 70, 71syl31anc 1375 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · 1))
7358recnd 11202 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℂ)
7473mulridd 11191 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · 1) = (𝑁‘(𝑇𝑥)))
7572, 74breqtrd 5133 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ (𝑁‘(𝑇𝑥)))
7657, 62, 58, 64, 75letrd 11331 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ (𝑁‘(𝑇𝑥)))
7752, 76eqbrtrd 5129 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)))
7834, 77sylan2b 594 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) → (abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)))
79 fveq1 6857 . . . . . . . . . . . . . 14 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)‘𝑥) = (𝑤𝑥))
8079fveq2d 6862 . . . . . . . . . . . . 13 ((𝐹𝑦) = 𝑤 → (abs‘((𝐹𝑦)‘𝑥)) = (abs‘(𝑤𝑥)))
8180breq1d 5117 . . . . . . . . . . . 12 ((𝐹𝑦) = 𝑤 → ((abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)) ↔ (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8278, 81syl5ibcom 245 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) → ((𝐹𝑦) = 𝑤 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8382rexlimdva 3134 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8431, 83syld 47 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑤𝐾 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8584ralrimiv 3124 . . . . . . . 8 ((𝜑𝑥𝑋) → ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥)))
86 brralrspcev 5167 . . . . . . . 8 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))) → ∃𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
8712, 85, 86syl2anc 584 . . . . . . 7 ((𝜑𝑥𝑋) → ∃𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
8887ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
89 imassrn 6042 . . . . . . . . 9 (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) ⊆ ran 𝐹
9027, 89eqsstri 3993 . . . . . . . 8 𝐾 ⊆ ran 𝐹
9123frnd 6696 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ (𝑈 BLnOp 𝑊))
9290, 91sstrid 3958 . . . . . . 7 (𝜑𝐾 ⊆ (𝑈 BLnOp 𝑊))
93 hlobn 30817 . . . . . . . . 9 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
942, 93ax-mp 5 . . . . . . . 8 𝑈 ∈ CBan
9517cnnv 30606 . . . . . . . 8 𝑊 ∈ NrmCVec
9617cnnvnm 30610 . . . . . . . . 9 abs = (normCV𝑊)
97 eqid 2729 . . . . . . . . 9 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
984, 96, 97ubth 30802 . . . . . . . 8 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝐾 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
9994, 95, 98mp3an12 1453 . . . . . . 7 (𝐾 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
10092, 99syl 17 . . . . . 6 (𝜑 → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
10188, 100mpbid 232 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦)
102 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1))
103 fveq2 6858 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑁𝑧) = (𝑁𝑥))
104103breq1d 5117 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → ((𝑁𝑧) ≤ 1 ↔ (𝑁𝑥) ≤ 1))
105104elrab 3659 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} ↔ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1))
106102, 105sylibr 234 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → 𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
10722, 21dmmptd 6663 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝑋)
108107eleq2d 2814 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝑋))
109108biimpar 477 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥 ∈ dom 𝐹)
110 funfvima 7204 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
11124, 110sylan 580 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
112109, 111syldan 591 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
113112ad2ant2r 747 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
114106, 113mpd 15 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}))
115114, 27eleqtrrdi 2839 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝐹𝑥) ∈ 𝐾)
116 fveq2 6858 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑥) → ((𝑈 normOpOLD 𝑊)‘𝑤) = ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
117116breq1d 5117 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑥) → (((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 ↔ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
118117rspcv 3584 . . . . . . . . . . 11 ((𝐹𝑥) ∈ 𝐾 → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
119115, 118syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
12012ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
121120, 120remulcld 11204 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ∈ ℝ)
12223ffvelcdmda 7056 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊))
12317cnnvba 30608 . . . . . . . . . . . . . . . . . . . 20 ℂ = (BaseSet‘𝑊)
1244, 123, 97, 18nmblore 30715 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
1253, 95, 124mp3an12 1453 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
126122, 125syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
127126ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
128127, 120remulcld 11204 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))) ∈ ℝ)
129 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 𝑦 ∈ ℝ)
130129, 120remulcld 11204 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑦 · (𝑁‘(𝑇𝑥))) ∈ ℝ)
131 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑥 → (𝑇𝑧) = (𝑇𝑥))
132131oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑥 → (𝑤𝑃(𝑇𝑧)) = (𝑤𝑃(𝑇𝑥)))
133132mpteq2dv 5201 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑥 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
134133, 22, 4mptfvmpt 7202 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑋 → (𝐹𝑥) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
135134adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
136135fveq1d 6860 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)))
137 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑇𝑥) → (𝑤𝑃(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
138 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))
139 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇𝑥)𝑃(𝑇𝑥)) ∈ V
140137, 138, 139fvmpt 6968 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇𝑥) ∈ 𝑋 → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
1419, 140syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
142136, 141eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
143142ad2ant2r 747 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
1449ad2ant2r 747 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑇𝑥) ∈ 𝑋)
1454, 10, 14ipidsq 30639 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → ((𝑇𝑥)𝑃(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
1463, 144, 145sylancr 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑇𝑥)𝑃(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
147143, 146eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
148147fveq2d 6862 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) = (abs‘((𝑁‘(𝑇𝑥))↑2)))
149 resqcl 14089 . . . . . . . . . . . . . . . . . . 19 ((𝑁‘(𝑇𝑥)) ∈ ℝ → ((𝑁‘(𝑇𝑥))↑2) ∈ ℝ)
150 sqge0 14101 . . . . . . . . . . . . . . . . . . 19 ((𝑁‘(𝑇𝑥)) ∈ ℝ → 0 ≤ ((𝑁‘(𝑇𝑥))↑2))
151149, 150absidd 15389 . . . . . . . . . . . . . . . . . 18 ((𝑁‘(𝑇𝑥)) ∈ ℝ → (abs‘((𝑁‘(𝑇𝑥))↑2)) = ((𝑁‘(𝑇𝑥))↑2))
152120, 151syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝑁‘(𝑇𝑥))↑2)) = ((𝑁‘(𝑇𝑥))↑2))
153120recnd 11202 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ∈ ℂ)
154153sqvald 14108 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥))↑2) = ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))))
155148, 152, 1543eqtrd 2768 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) = ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))))
156122ad2ant2r 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊))
1574, 10, 96, 97, 18, 3, 95nmblolbi 30729 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) ∧ (𝑇𝑥) ∈ 𝑋) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
158156, 144, 157syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
159155, 158eqbrtrrd 5131 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
1603, 144, 66sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ (𝑁‘(𝑇𝑥)))
161 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)
162127, 129, 120, 160, 161lemul1ad 12122 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))))
163121, 128, 130, 159, 162letrd 11331 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))))
164 lemul1 12034 . . . . . . . . . . . . . . . . . 18 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥)))) → ((𝑁‘(𝑇𝑥)) ≤ 𝑦 ↔ ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥)))))
165164biimprd 248 . . . . . . . . . . . . . . . . 17 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥)))) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
1661653expia 1121 . . . . . . . . . . . . . . . 16 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥))) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
167166expdimp 452 . . . . . . . . . . . . . . 15 ((((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑁‘(𝑇𝑥)) ∈ ℝ) → (0 < (𝑁‘(𝑇𝑥)) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
168120, 129, 120, 167syl21anc 837 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
169163, 168mpid 44 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
170 0red 11177 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ∈ ℝ)
1714, 123, 18blof 30714 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊)) → (𝐹𝑥):𝑋⟶ℂ)
1723, 95, 171mp3an12 1453 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) → (𝐹𝑥):𝑋⟶ℂ)
173122, 172syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → (𝐹𝑥):𝑋⟶ℂ)
174173ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝐹𝑥):𝑋⟶ℂ)
1754, 123, 97nmooge0 30696 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥):𝑋⟶ℂ) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
1763, 95, 175mp3an12 1453 . . . . . . . . . . . . . . . 16 ((𝐹𝑥):𝑋⟶ℂ → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
177174, 176syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
178170, 127, 129, 177, 161letrd 11331 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ 𝑦)
179 breq1 5110 . . . . . . . . . . . . . 14 (0 = (𝑁‘(𝑇𝑥)) → (0 ≤ 𝑦 ↔ (𝑁‘(𝑇𝑥)) ≤ 𝑦))
180178, 179syl5ibcom 245 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 = (𝑁‘(𝑇𝑥)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
181 0re 11176 . . . . . . . . . . . . . . 15 0 ∈ ℝ
182 leloe 11260 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝑁‘(𝑇𝑥)) ∈ ℝ) → (0 ≤ (𝑁‘(𝑇𝑥)) ↔ (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥)))))
183181, 120, 182sylancr 587 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 ≤ (𝑁‘(𝑇𝑥)) ↔ (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥)))))
184160, 183mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥))))
185169, 180, 184mpjaod 860 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)
186185expr 456 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
187186adantrr 717 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
188119, 187syld 47 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
189188expr 456 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → ((𝑁𝑥) ≤ 1 → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
190189com23 86 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
191190ralrimdva 3133 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
192191reximdva 3146 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
193101, 192mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
194 eqid 2729 . . . . . 6 (𝑈 normOpOLD 𝑈) = (𝑈 normOpOLD 𝑈)
1954, 4, 10, 10, 194, 3, 3nmobndi 30704 . . . . 5 (𝑇:𝑋𝑋 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
1968, 195syl 17 . . . 4 (𝜑 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
197193, 196mpbird 257 . . 3 (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ)
198 ltpnf 13080 . . 3 (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)
199197, 198syl 17 . 2 (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)
200 htth.4 . . . 4 𝐵 = (𝑈 BLnOp 𝑈)
201194, 5, 200isblo 30711 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)))
2023, 3, 201mp2an 692 . 2 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞))
2031, 199, 202sylanbrc 583 1 (𝜑𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  wss 3914  cop 4595   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205   < clt 11208  cle 11209  2c2 12241  cexp 14026  abscabs 15200  NrmCVeccnv 30513  BaseSetcba 30515  normCVcnmcv 30519  ·𝑖OLDcdip 30629   LnOp clno 30669   normOpOLD cnmoo 30670   BLnOp cblo 30671  CPreHilOLDccphlo 30741  CBanccbn 30791  CHilOLDchlo 30814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-dc 10399  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-lm 23116  df-t1 23201  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-fcls 23828  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-cfil 25155  df-cau 25156  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-lno 30673  df-nmoo 30674  df-blo 30675  df-0o 30676  df-ph 30742  df-cbn 30792  df-hlo 30815
This theorem is referenced by:  htth  30847
  Copyright terms: Public domain W3C validator