MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htthlem Structured version   Visualization version   GIF version

Theorem htthlem 28346
Description: Lemma for htth 28347. The collection 𝐾, which consists of functions 𝐹(𝑧)(𝑤) = ⟨𝑤𝑇(𝑧)⟩ = ⟨𝑇(𝑤) ∣ 𝑧 for each 𝑧 in the unit ball, is a collection of bounded linear functions by ipblnfi 28283, so by the Uniform Boundedness theorem ubth 28301, there is a uniform bound 𝑦 on 𝐹(𝑥) ∥ for all 𝑥 in the unit ball. Then 𝑇(𝑥) ∣ ↑2 = ⟨𝑇(𝑥) ∣ 𝑇(𝑥)⟩ = 𝐹(𝑥)( 𝑇(𝑥)) ≤ 𝑦𝑇(𝑥) ∣, so 𝑇(𝑥) ∣ ≤ 𝑦 and 𝑇 is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1 𝑋 = (BaseSet‘𝑈)
htth.2 𝑃 = (·𝑖OLD𝑈)
htth.3 𝐿 = (𝑈 LnOp 𝑈)
htth.4 𝐵 = (𝑈 BLnOp 𝑈)
htthlem.5 𝑁 = (normCV𝑈)
htthlem.6 𝑈 ∈ CHilOLD
htthlem.7 𝑊 = ⟨⟨ + , · ⟩, abs⟩
htthlem.8 (𝜑𝑇𝐿)
htthlem.9 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
htthlem.10 𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))
htthlem.11 𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
Assertion
Ref Expression
htthlem (𝜑𝑇𝐵)
Distinct variable groups:   𝑦,𝑤,𝐹   𝑥,𝑤,𝑧,𝐾,𝑦   𝑤,𝑁,𝑥,𝑦,𝑧   𝑤,𝑃,𝑧   𝑤,𝑊,𝑥,𝑦,𝑧   𝜑,𝑤,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧   𝑤,𝑈,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦)   𝐹(𝑥,𝑧)   𝐿(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem htthlem
StepHypRef Expression
1 htthlem.8 . 2 (𝜑𝑇𝐿)
2 htthlem.6 . . . . . . . . . 10 𝑈 ∈ CHilOLD
32hlnvi 28320 . . . . . . . . 9 𝑈 ∈ NrmCVec
4 htth.1 . . . . . . . . . . . . 13 𝑋 = (BaseSet‘𝑈)
5 htth.3 . . . . . . . . . . . . 13 𝐿 = (𝑈 LnOp 𝑈)
64, 4, 5lnof 28182 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑋)
73, 3, 6mp3an12 1524 . . . . . . . . . . 11 (𝑇𝐿𝑇:𝑋𝑋)
81, 7syl 17 . . . . . . . . . 10 (𝜑𝑇:𝑋𝑋)
98ffvelrnda 6623 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑇𝑥) ∈ 𝑋)
10 htthlem.5 . . . . . . . . . 10 𝑁 = (normCV𝑈)
114, 10nvcl 28088 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
123, 9, 11sylancr 581 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
138ffvelrnda 6623 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → (𝑇𝑧) ∈ 𝑋)
14 htth.2 . . . . . . . . . . . . . . . . 17 𝑃 = (·𝑖OLD𝑈)
15 hlph 28317 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
162, 15ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑈 ∈ CPreHilOLD
17 htthlem.7 . . . . . . . . . . . . . . . . 17 𝑊 = ⟨⟨ + , · ⟩, abs⟩
18 eqid 2778 . . . . . . . . . . . . . . . . 17 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
19 eqid 2778 . . . . . . . . . . . . . . . . 17 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧)))
204, 14, 16, 17, 18, 19ipblnfi 28283 . . . . . . . . . . . . . . . 16 ((𝑇𝑧) ∈ 𝑋 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) ∈ (𝑈 BLnOp 𝑊))
2113, 20syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑋) → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) ∈ (𝑈 BLnOp 𝑊))
22 htthlem.10 . . . . . . . . . . . . . . 15 𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))
2321, 22fmptd 6648 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑋⟶(𝑈 BLnOp 𝑊))
2423ffund 6295 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
2524adantr 474 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → Fun 𝐹)
26 id 22 . . . . . . . . . . . . 13 (𝑤𝐾𝑤𝐾)
27 htthlem.11 . . . . . . . . . . . . 13 𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
2826, 27syl6eleq 2869 . . . . . . . . . . . 12 (𝑤𝐾𝑤 ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}))
29 fvelima 6508 . . . . . . . . . . . 12 ((Fun 𝐹𝑤 ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})) → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤)
3025, 28, 29syl2an 589 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑤𝐾) → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤)
3130ex 403 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑤𝐾 → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤))
32 fveq2 6446 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑁𝑧) = (𝑁𝑦))
3332breq1d 4896 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑁𝑧) ≤ 1 ↔ (𝑁𝑦) ≤ 1))
3433elrab 3572 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} ↔ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1))
35 fveq2 6446 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → (𝑇𝑧) = (𝑇𝑦))
3635oveq2d 6938 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (𝑤𝑃(𝑇𝑧)) = (𝑤𝑃(𝑇𝑦)))
3736mpteq2dv 4980 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))))
3837, 22, 4mptfvmpt 6762 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑋 → (𝐹𝑦) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))))
3938fveq1d 6448 . . . . . . . . . . . . . . . . . 18 (𝑦𝑋 → ((𝐹𝑦)‘𝑥) = ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))‘𝑥))
40 oveq1 6929 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → (𝑤𝑃(𝑇𝑦)) = (𝑥𝑃(𝑇𝑦)))
41 eqid 2778 . . . . . . . . . . . . . . . . . . 19 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))
42 ovex 6954 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑃(𝑇𝑦)) ∈ V
4340, 41, 42fvmpt 6542 . . . . . . . . . . . . . . . . . 18 (𝑥𝑋 → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))‘𝑥) = (𝑥𝑃(𝑇𝑦)))
4439, 43sylan9eqr 2836 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑦𝑋) → ((𝐹𝑦)‘𝑥) = (𝑥𝑃(𝑇𝑦)))
4544ad2ant2lr 738 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝐹𝑦)‘𝑥) = (𝑥𝑃(𝑇𝑦)))
46 htthlem.9 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
47 rsp2 3118 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) → ((𝑥𝑋𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)))
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑥𝑋𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)))
4948impl 449 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
5049adantrr 707 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
5145, 50eqtrd 2814 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝐹𝑦)‘𝑥) = ((𝑇𝑥)𝑃𝑦))
5251fveq2d 6450 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝐹𝑦)‘𝑥)) = (abs‘((𝑇𝑥)𝑃𝑦)))
53 simpl 476 . . . . . . . . . . . . . . . . 17 ((𝑦𝑋 ∧ (𝑁𝑦) ≤ 1) → 𝑦𝑋)
544, 14dipcl 28139 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋𝑦𝑋) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
553, 54mp3an1 1521 . . . . . . . . . . . . . . . . 17 (((𝑇𝑥) ∈ 𝑋𝑦𝑋) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
569, 53, 55syl2an 589 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
5756abscld 14583 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ∈ ℝ)
5812adantr 474 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
594, 10nvcl 28088 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
603, 59mpan 680 . . . . . . . . . . . . . . . . 17 (𝑦𝑋 → (𝑁𝑦) ∈ ℝ)
6160ad2antrl 718 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁𝑦) ∈ ℝ)
6258, 61remulcld 10407 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ∈ ℝ)
634, 10, 14, 16sii 28281 . . . . . . . . . . . . . . . 16 (((𝑇𝑥) ∈ 𝑋𝑦𝑋) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)))
649, 53, 63syl2an 589 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)))
65 1red 10377 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → 1 ∈ ℝ)
664, 10nvge0 28100 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝑇𝑥)))
673, 9, 66sylancr 581 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑋) → 0 ≤ (𝑁‘(𝑇𝑥)))
6812, 67jca 507 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥))))
6968adantr 474 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥))))
70 simprr 763 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁𝑦) ≤ 1)
71 lemul2a 11232 . . . . . . . . . . . . . . . . 17 ((((𝑁𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥)))) ∧ (𝑁𝑦) ≤ 1) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · 1))
7261, 65, 69, 70, 71syl31anc 1441 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · 1))
7358recnd 10405 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℂ)
7473mulid1d 10394 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · 1) = (𝑁‘(𝑇𝑥)))
7572, 74breqtrd 4912 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ (𝑁‘(𝑇𝑥)))
7657, 62, 58, 64, 75letrd 10533 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ (𝑁‘(𝑇𝑥)))
7752, 76eqbrtrd 4908 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)))
7834, 77sylan2b 587 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) → (abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)))
79 fveq1 6445 . . . . . . . . . . . . . 14 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)‘𝑥) = (𝑤𝑥))
8079fveq2d 6450 . . . . . . . . . . . . 13 ((𝐹𝑦) = 𝑤 → (abs‘((𝐹𝑦)‘𝑥)) = (abs‘(𝑤𝑥)))
8180breq1d 4896 . . . . . . . . . . . 12 ((𝐹𝑦) = 𝑤 → ((abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)) ↔ (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8278, 81syl5ibcom 237 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) → ((𝐹𝑦) = 𝑤 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8382rexlimdva 3213 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8431, 83syld 47 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑤𝐾 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8584ralrimiv 3147 . . . . . . . 8 ((𝜑𝑥𝑋) → ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥)))
86 brralrspcev 4946 . . . . . . . 8 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))) → ∃𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
8712, 85, 86syl2anc 579 . . . . . . 7 ((𝜑𝑥𝑋) → ∃𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
8887ralrimiva 3148 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
89 imassrn 5731 . . . . . . . . 9 (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) ⊆ ran 𝐹
9027, 89eqsstri 3854 . . . . . . . 8 𝐾 ⊆ ran 𝐹
9123frnd 6298 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ (𝑈 BLnOp 𝑊))
9290, 91syl5ss 3832 . . . . . . 7 (𝜑𝐾 ⊆ (𝑈 BLnOp 𝑊))
93 hlobn 28316 . . . . . . . . 9 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
942, 93ax-mp 5 . . . . . . . 8 𝑈 ∈ CBan
9517cnnv 28104 . . . . . . . 8 𝑊 ∈ NrmCVec
9617cnnvnm 28108 . . . . . . . . 9 abs = (normCV𝑊)
97 eqid 2778 . . . . . . . . 9 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
984, 96, 97ubth 28301 . . . . . . . 8 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝐾 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
9994, 95, 98mp3an12 1524 . . . . . . 7 (𝐾 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
10092, 99syl 17 . . . . . 6 (𝜑 → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
10188, 100mpbid 224 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦)
102 simpr 479 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1))
103 fveq2 6446 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑁𝑧) = (𝑁𝑥))
104103breq1d 4896 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → ((𝑁𝑧) ≤ 1 ↔ (𝑁𝑥) ≤ 1))
105104elrab 3572 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} ↔ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1))
106102, 105sylibr 226 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → 𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
10722, 21dmmptd 6270 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝑋)
108107eleq2d 2845 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝑋))
109108biimpar 471 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥 ∈ dom 𝐹)
110 funfvima 6764 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
11124, 110sylan 575 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
112109, 111syldan 585 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
113112ad2ant2r 737 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
114106, 113mpd 15 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}))
115114, 27syl6eleqr 2870 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝐹𝑥) ∈ 𝐾)
116 fveq2 6446 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑥) → ((𝑈 normOpOLD 𝑊)‘𝑤) = ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
117116breq1d 4896 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑥) → (((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 ↔ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
118117rspcv 3507 . . . . . . . . . . 11 ((𝐹𝑥) ∈ 𝐾 → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
119115, 118syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
12012ad2ant2r 737 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
121120, 120remulcld 10407 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ∈ ℝ)
12223ffvelrnda 6623 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊))
12317cnnvba 28106 . . . . . . . . . . . . . . . . . . . 20 ℂ = (BaseSet‘𝑊)
1244, 123, 97, 18nmblore 28213 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
1253, 95, 124mp3an12 1524 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
126122, 125syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
127126ad2ant2r 737 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
128127, 120remulcld 10407 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))) ∈ ℝ)
129 simplr 759 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 𝑦 ∈ ℝ)
130129, 120remulcld 10407 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑦 · (𝑁‘(𝑇𝑥))) ∈ ℝ)
131 fveq2 6446 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑥 → (𝑇𝑧) = (𝑇𝑥))
132131oveq2d 6938 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑥 → (𝑤𝑃(𝑇𝑧)) = (𝑤𝑃(𝑇𝑥)))
133132mpteq2dv 4980 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑥 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
134133, 22, 4mptfvmpt 6762 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑋 → (𝐹𝑥) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
135134adantl 475 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
136135fveq1d 6448 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)))
137 oveq1 6929 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑇𝑥) → (𝑤𝑃(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
138 eqid 2778 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))
139 ovex 6954 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇𝑥)𝑃(𝑇𝑥)) ∈ V
140137, 138, 139fvmpt 6542 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇𝑥) ∈ 𝑋 → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
1419, 140syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
142136, 141eqtrd 2814 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
143142ad2ant2r 737 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
1449ad2ant2r 737 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑇𝑥) ∈ 𝑋)
1454, 10, 14ipidsq 28137 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → ((𝑇𝑥)𝑃(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
1463, 144, 145sylancr 581 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑇𝑥)𝑃(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
147143, 146eqtrd 2814 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
148147fveq2d 6450 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) = (abs‘((𝑁‘(𝑇𝑥))↑2)))
149 resqcl 13249 . . . . . . . . . . . . . . . . . . 19 ((𝑁‘(𝑇𝑥)) ∈ ℝ → ((𝑁‘(𝑇𝑥))↑2) ∈ ℝ)
150 sqge0 13259 . . . . . . . . . . . . . . . . . . 19 ((𝑁‘(𝑇𝑥)) ∈ ℝ → 0 ≤ ((𝑁‘(𝑇𝑥))↑2))
151149, 150absidd 14569 . . . . . . . . . . . . . . . . . 18 ((𝑁‘(𝑇𝑥)) ∈ ℝ → (abs‘((𝑁‘(𝑇𝑥))↑2)) = ((𝑁‘(𝑇𝑥))↑2))
152120, 151syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝑁‘(𝑇𝑥))↑2)) = ((𝑁‘(𝑇𝑥))↑2))
153120recnd 10405 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ∈ ℂ)
154153sqvald 13324 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥))↑2) = ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))))
155148, 152, 1543eqtrd 2818 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) = ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))))
156122ad2ant2r 737 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊))
1574, 10, 96, 97, 18, 3, 95nmblolbi 28227 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) ∧ (𝑇𝑥) ∈ 𝑋) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
158156, 144, 157syl2anc 579 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
159155, 158eqbrtrrd 4910 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
1603, 144, 66sylancr 581 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ (𝑁‘(𝑇𝑥)))
161 simprr 763 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)
162127, 129, 120, 160, 161lemul1ad 11317 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))))
163121, 128, 130, 159, 162letrd 10533 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))))
164 lemul1 11229 . . . . . . . . . . . . . . . . . 18 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥)))) → ((𝑁‘(𝑇𝑥)) ≤ 𝑦 ↔ ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥)))))
165164biimprd 240 . . . . . . . . . . . . . . . . 17 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥)))) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
1661653expia 1111 . . . . . . . . . . . . . . . 16 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥))) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
167166expdimp 446 . . . . . . . . . . . . . . 15 ((((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑁‘(𝑇𝑥)) ∈ ℝ) → (0 < (𝑁‘(𝑇𝑥)) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
168120, 129, 120, 167syl21anc 828 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
169163, 168mpid 44 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
170 0red 10380 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ∈ ℝ)
1714, 123, 18blof 28212 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊)) → (𝐹𝑥):𝑋⟶ℂ)
1723, 95, 171mp3an12 1524 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) → (𝐹𝑥):𝑋⟶ℂ)
173122, 172syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → (𝐹𝑥):𝑋⟶ℂ)
174173ad2ant2r 737 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝐹𝑥):𝑋⟶ℂ)
1754, 123, 97nmooge0 28194 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥):𝑋⟶ℂ) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
1763, 95, 175mp3an12 1524 . . . . . . . . . . . . . . . 16 ((𝐹𝑥):𝑋⟶ℂ → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
177174, 176syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
178170, 127, 129, 177, 161letrd 10533 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ 𝑦)
179 breq1 4889 . . . . . . . . . . . . . 14 (0 = (𝑁‘(𝑇𝑥)) → (0 ≤ 𝑦 ↔ (𝑁‘(𝑇𝑥)) ≤ 𝑦))
180178, 179syl5ibcom 237 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 = (𝑁‘(𝑇𝑥)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
181 0re 10378 . . . . . . . . . . . . . . 15 0 ∈ ℝ
182 leloe 10463 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝑁‘(𝑇𝑥)) ∈ ℝ) → (0 ≤ (𝑁‘(𝑇𝑥)) ↔ (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥)))))
183181, 120, 182sylancr 581 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 ≤ (𝑁‘(𝑇𝑥)) ↔ (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥)))))
184160, 183mpbid 224 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥))))
185169, 180, 184mpjaod 849 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)
186185expr 450 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
187186adantrr 707 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
188119, 187syld 47 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
189188expr 450 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → ((𝑁𝑥) ≤ 1 → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
190189com23 86 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
191190ralrimdva 3151 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
192191reximdva 3198 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
193101, 192mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
194 eqid 2778 . . . . . 6 (𝑈 normOpOLD 𝑈) = (𝑈 normOpOLD 𝑈)
1954, 4, 10, 10, 194, 3, 3nmobndi 28202 . . . . 5 (𝑇:𝑋𝑋 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
1968, 195syl 17 . . . 4 (𝜑 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
197193, 196mpbird 249 . . 3 (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ)
198 ltpnf 12265 . . 3 (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)
199197, 198syl 17 . 2 (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)
200 htth.4 . . . 4 𝐵 = (𝑈 BLnOp 𝑈)
201194, 5, 200isblo 28209 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)))
2023, 3, 201mp2an 682 . 2 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞))
2031, 199, 202sylanbrc 578 1 (𝜑𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  wral 3090  wrex 3091  {crab 3094  wss 3792  cop 4404   class class class wbr 4886  cmpt 4965  dom cdm 5355  ran crn 5356  cima 5358  Fun wfun 6129  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  +∞cpnf 10408   < clt 10411  cle 10412  2c2 11430  cexp 13178  abscabs 14381  NrmCVeccnv 28011  BaseSetcba 28013  normCVcnmcv 28017  ·𝑖OLDcdip 28127   LnOp clno 28167   normOpOLD cnmoo 28168   BLnOp cblo 28169  CPreHilOLDccphlo 28239  CBanccbn 28290  CHilOLDchlo 28313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-dc 9603  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-cn 21439  df-cnp 21440  df-lm 21441  df-t1 21526  df-haus 21527  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-fcls 22153  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-cfil 23461  df-cau 23462  df-cmet 23463  df-grpo 27920  df-gid 27921  df-ginv 27922  df-gdiv 27923  df-ablo 27972  df-vc 27986  df-nv 28019  df-va 28022  df-ba 28023  df-sm 28024  df-0v 28025  df-vs 28026  df-nmcv 28027  df-ims 28028  df-dip 28128  df-lno 28171  df-nmoo 28172  df-blo 28173  df-0o 28174  df-ph 28240  df-cbn 28291  df-hlo 28314
This theorem is referenced by:  htth  28347
  Copyright terms: Public domain W3C validator