MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htthlem Structured version   Visualization version   GIF version

Theorem htthlem 30949
Description: Lemma for htth 30950. The collection 𝐾, which consists of functions 𝐹(𝑧)(𝑤) = ⟨𝑤𝑇(𝑧)⟩ = ⟨𝑇(𝑤) ∣ 𝑧 for each 𝑧 in the unit ball, is a collection of bounded linear functions by ipblnfi 30887, so by the Uniform Boundedness theorem ubth 30905, there is a uniform bound 𝑦 on 𝐹(𝑥) ∥ for all 𝑥 in the unit ball. Then 𝑇(𝑥) ∣ ↑2 = ⟨𝑇(𝑥) ∣ 𝑇(𝑥)⟩ = 𝐹(𝑥)( 𝑇(𝑥)) ≤ 𝑦𝑇(𝑥) ∣, so 𝑇(𝑥) ∣ ≤ 𝑦 and 𝑇 is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1 𝑋 = (BaseSet‘𝑈)
htth.2 𝑃 = (·𝑖OLD𝑈)
htth.3 𝐿 = (𝑈 LnOp 𝑈)
htth.4 𝐵 = (𝑈 BLnOp 𝑈)
htthlem.5 𝑁 = (normCV𝑈)
htthlem.6 𝑈 ∈ CHilOLD
htthlem.7 𝑊 = ⟨⟨ + , · ⟩, abs⟩
htthlem.8 (𝜑𝑇𝐿)
htthlem.9 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
htthlem.10 𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))
htthlem.11 𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
Assertion
Ref Expression
htthlem (𝜑𝑇𝐵)
Distinct variable groups:   𝑦,𝑤,𝐹   𝑥,𝑤,𝑧,𝐾,𝑦   𝑤,𝑁,𝑥,𝑦,𝑧   𝑤,𝑃,𝑧   𝑤,𝑊,𝑥,𝑦,𝑧   𝜑,𝑤,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧   𝑤,𝑈,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦)   𝐹(𝑥,𝑧)   𝐿(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem htthlem
StepHypRef Expression
1 htthlem.8 . 2 (𝜑𝑇𝐿)
2 htthlem.6 . . . . . . . . . 10 𝑈 ∈ CHilOLD
32hlnvi 30924 . . . . . . . . 9 𝑈 ∈ NrmCVec
4 htth.1 . . . . . . . . . . . . 13 𝑋 = (BaseSet‘𝑈)
5 htth.3 . . . . . . . . . . . . 13 𝐿 = (𝑈 LnOp 𝑈)
64, 4, 5lnof 30787 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑋)
73, 3, 6mp3an12 1451 . . . . . . . . . . 11 (𝑇𝐿𝑇:𝑋𝑋)
81, 7syl 17 . . . . . . . . . 10 (𝜑𝑇:𝑋𝑋)
98ffvelcdmda 7118 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑇𝑥) ∈ 𝑋)
10 htthlem.5 . . . . . . . . . 10 𝑁 = (normCV𝑈)
114, 10nvcl 30693 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
123, 9, 11sylancr 586 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
138ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → (𝑇𝑧) ∈ 𝑋)
14 htth.2 . . . . . . . . . . . . . . . . 17 𝑃 = (·𝑖OLD𝑈)
15 hlph 30921 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
162, 15ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑈 ∈ CPreHilOLD
17 htthlem.7 . . . . . . . . . . . . . . . . 17 𝑊 = ⟨⟨ + , · ⟩, abs⟩
18 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
19 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧)))
204, 14, 16, 17, 18, 19ipblnfi 30887 . . . . . . . . . . . . . . . 16 ((𝑇𝑧) ∈ 𝑋 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) ∈ (𝑈 BLnOp 𝑊))
2113, 20syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑋) → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) ∈ (𝑈 BLnOp 𝑊))
22 htthlem.10 . . . . . . . . . . . . . . 15 𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))
2321, 22fmptd 7148 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑋⟶(𝑈 BLnOp 𝑊))
2423ffund 6751 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
2524adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → Fun 𝐹)
26 id 22 . . . . . . . . . . . . 13 (𝑤𝐾𝑤𝐾)
27 htthlem.11 . . . . . . . . . . . . 13 𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
2826, 27eleqtrdi 2854 . . . . . . . . . . . 12 (𝑤𝐾𝑤 ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}))
29 fvelima 6987 . . . . . . . . . . . 12 ((Fun 𝐹𝑤 ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})) → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤)
3025, 28, 29syl2an 595 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑤𝐾) → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤)
3130ex 412 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑤𝐾 → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤))
32 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑁𝑧) = (𝑁𝑦))
3332breq1d 5176 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑁𝑧) ≤ 1 ↔ (𝑁𝑦) ≤ 1))
3433elrab 3708 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} ↔ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1))
35 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → (𝑇𝑧) = (𝑇𝑦))
3635oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (𝑤𝑃(𝑇𝑧)) = (𝑤𝑃(𝑇𝑦)))
3736mpteq2dv 5268 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))))
3837, 22, 4mptfvmpt 7265 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑋 → (𝐹𝑦) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))))
3938fveq1d 6922 . . . . . . . . . . . . . . . . . 18 (𝑦𝑋 → ((𝐹𝑦)‘𝑥) = ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))‘𝑥))
40 oveq1 7455 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → (𝑤𝑃(𝑇𝑦)) = (𝑥𝑃(𝑇𝑦)))
41 eqid 2740 . . . . . . . . . . . . . . . . . . 19 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))
42 ovex 7481 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑃(𝑇𝑦)) ∈ V
4340, 41, 42fvmpt 7029 . . . . . . . . . . . . . . . . . 18 (𝑥𝑋 → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))‘𝑥) = (𝑥𝑃(𝑇𝑦)))
4439, 43sylan9eqr 2802 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑦𝑋) → ((𝐹𝑦)‘𝑥) = (𝑥𝑃(𝑇𝑦)))
4544ad2ant2lr 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝐹𝑦)‘𝑥) = (𝑥𝑃(𝑇𝑦)))
46 htthlem.9 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
47 rsp2 3283 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) → ((𝑥𝑋𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)))
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑥𝑋𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)))
4948impl 455 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
5049adantrr 716 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
5145, 50eqtrd 2780 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝐹𝑦)‘𝑥) = ((𝑇𝑥)𝑃𝑦))
5251fveq2d 6924 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝐹𝑦)‘𝑥)) = (abs‘((𝑇𝑥)𝑃𝑦)))
53 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑦𝑋 ∧ (𝑁𝑦) ≤ 1) → 𝑦𝑋)
544, 14dipcl 30744 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋𝑦𝑋) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
553, 54mp3an1 1448 . . . . . . . . . . . . . . . . 17 (((𝑇𝑥) ∈ 𝑋𝑦𝑋) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
569, 53, 55syl2an 595 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
5756abscld 15485 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ∈ ℝ)
5812adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
594, 10nvcl 30693 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
603, 59mpan 689 . . . . . . . . . . . . . . . . 17 (𝑦𝑋 → (𝑁𝑦) ∈ ℝ)
6160ad2antrl 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁𝑦) ∈ ℝ)
6258, 61remulcld 11320 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ∈ ℝ)
634, 10, 14, 16sii 30886 . . . . . . . . . . . . . . . 16 (((𝑇𝑥) ∈ 𝑋𝑦𝑋) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)))
649, 53, 63syl2an 595 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)))
65 1red 11291 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → 1 ∈ ℝ)
664, 10nvge0 30705 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝑇𝑥)))
673, 9, 66sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑋) → 0 ≤ (𝑁‘(𝑇𝑥)))
6812, 67jca 511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥))))
6968adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥))))
70 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁𝑦) ≤ 1)
71 lemul2a 12149 . . . . . . . . . . . . . . . . 17 ((((𝑁𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥)))) ∧ (𝑁𝑦) ≤ 1) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · 1))
7261, 65, 69, 70, 71syl31anc 1373 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · 1))
7358recnd 11318 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℂ)
7473mulridd 11307 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · 1) = (𝑁‘(𝑇𝑥)))
7572, 74breqtrd 5192 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ (𝑁‘(𝑇𝑥)))
7657, 62, 58, 64, 75letrd 11447 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ (𝑁‘(𝑇𝑥)))
7752, 76eqbrtrd 5188 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)))
7834, 77sylan2b 593 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) → (abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)))
79 fveq1 6919 . . . . . . . . . . . . . 14 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)‘𝑥) = (𝑤𝑥))
8079fveq2d 6924 . . . . . . . . . . . . 13 ((𝐹𝑦) = 𝑤 → (abs‘((𝐹𝑦)‘𝑥)) = (abs‘(𝑤𝑥)))
8180breq1d 5176 . . . . . . . . . . . 12 ((𝐹𝑦) = 𝑤 → ((abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)) ↔ (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8278, 81syl5ibcom 245 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) → ((𝐹𝑦) = 𝑤 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8382rexlimdva 3161 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8431, 83syld 47 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑤𝐾 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8584ralrimiv 3151 . . . . . . . 8 ((𝜑𝑥𝑋) → ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥)))
86 brralrspcev 5226 . . . . . . . 8 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))) → ∃𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
8712, 85, 86syl2anc 583 . . . . . . 7 ((𝜑𝑥𝑋) → ∃𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
8887ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
89 imassrn 6100 . . . . . . . . 9 (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) ⊆ ran 𝐹
9027, 89eqsstri 4043 . . . . . . . 8 𝐾 ⊆ ran 𝐹
9123frnd 6755 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ (𝑈 BLnOp 𝑊))
9290, 91sstrid 4020 . . . . . . 7 (𝜑𝐾 ⊆ (𝑈 BLnOp 𝑊))
93 hlobn 30920 . . . . . . . . 9 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
942, 93ax-mp 5 . . . . . . . 8 𝑈 ∈ CBan
9517cnnv 30709 . . . . . . . 8 𝑊 ∈ NrmCVec
9617cnnvnm 30713 . . . . . . . . 9 abs = (normCV𝑊)
97 eqid 2740 . . . . . . . . 9 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
984, 96, 97ubth 30905 . . . . . . . 8 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝐾 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
9994, 95, 98mp3an12 1451 . . . . . . 7 (𝐾 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
10092, 99syl 17 . . . . . 6 (𝜑 → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
10188, 100mpbid 232 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦)
102 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1))
103 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑁𝑧) = (𝑁𝑥))
104103breq1d 5176 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → ((𝑁𝑧) ≤ 1 ↔ (𝑁𝑥) ≤ 1))
105104elrab 3708 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} ↔ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1))
106102, 105sylibr 234 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → 𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
10722, 21dmmptd 6725 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝑋)
108107eleq2d 2830 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝑋))
109108biimpar 477 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥 ∈ dom 𝐹)
110 funfvima 7267 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
11124, 110sylan 579 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
112109, 111syldan 590 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
113112ad2ant2r 746 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
114106, 113mpd 15 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}))
115114, 27eleqtrrdi 2855 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝐹𝑥) ∈ 𝐾)
116 fveq2 6920 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑥) → ((𝑈 normOpOLD 𝑊)‘𝑤) = ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
117116breq1d 5176 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑥) → (((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 ↔ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
118117rspcv 3631 . . . . . . . . . . 11 ((𝐹𝑥) ∈ 𝐾 → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
119115, 118syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
12012ad2ant2r 746 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
121120, 120remulcld 11320 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ∈ ℝ)
12223ffvelcdmda 7118 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊))
12317cnnvba 30711 . . . . . . . . . . . . . . . . . . . 20 ℂ = (BaseSet‘𝑊)
1244, 123, 97, 18nmblore 30818 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
1253, 95, 124mp3an12 1451 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
126122, 125syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
127126ad2ant2r 746 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
128127, 120remulcld 11320 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))) ∈ ℝ)
129 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 𝑦 ∈ ℝ)
130129, 120remulcld 11320 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑦 · (𝑁‘(𝑇𝑥))) ∈ ℝ)
131 fveq2 6920 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑥 → (𝑇𝑧) = (𝑇𝑥))
132131oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑥 → (𝑤𝑃(𝑇𝑧)) = (𝑤𝑃(𝑇𝑥)))
133132mpteq2dv 5268 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑥 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
134133, 22, 4mptfvmpt 7265 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑋 → (𝐹𝑥) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
135134adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
136135fveq1d 6922 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)))
137 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑇𝑥) → (𝑤𝑃(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
138 eqid 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))
139 ovex 7481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇𝑥)𝑃(𝑇𝑥)) ∈ V
140137, 138, 139fvmpt 7029 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇𝑥) ∈ 𝑋 → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
1419, 140syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
142136, 141eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
143142ad2ant2r 746 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
1449ad2ant2r 746 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑇𝑥) ∈ 𝑋)
1454, 10, 14ipidsq 30742 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → ((𝑇𝑥)𝑃(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
1463, 144, 145sylancr 586 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑇𝑥)𝑃(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
147143, 146eqtrd 2780 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
148147fveq2d 6924 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) = (abs‘((𝑁‘(𝑇𝑥))↑2)))
149 resqcl 14174 . . . . . . . . . . . . . . . . . . 19 ((𝑁‘(𝑇𝑥)) ∈ ℝ → ((𝑁‘(𝑇𝑥))↑2) ∈ ℝ)
150 sqge0 14186 . . . . . . . . . . . . . . . . . . 19 ((𝑁‘(𝑇𝑥)) ∈ ℝ → 0 ≤ ((𝑁‘(𝑇𝑥))↑2))
151149, 150absidd 15471 . . . . . . . . . . . . . . . . . 18 ((𝑁‘(𝑇𝑥)) ∈ ℝ → (abs‘((𝑁‘(𝑇𝑥))↑2)) = ((𝑁‘(𝑇𝑥))↑2))
152120, 151syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝑁‘(𝑇𝑥))↑2)) = ((𝑁‘(𝑇𝑥))↑2))
153120recnd 11318 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ∈ ℂ)
154153sqvald 14193 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥))↑2) = ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))))
155148, 152, 1543eqtrd 2784 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) = ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))))
156122ad2ant2r 746 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊))
1574, 10, 96, 97, 18, 3, 95nmblolbi 30832 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) ∧ (𝑇𝑥) ∈ 𝑋) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
158156, 144, 157syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
159155, 158eqbrtrrd 5190 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
1603, 144, 66sylancr 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ (𝑁‘(𝑇𝑥)))
161 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)
162127, 129, 120, 160, 161lemul1ad 12234 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))))
163121, 128, 130, 159, 162letrd 11447 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))))
164 lemul1 12146 . . . . . . . . . . . . . . . . . 18 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥)))) → ((𝑁‘(𝑇𝑥)) ≤ 𝑦 ↔ ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥)))))
165164biimprd 248 . . . . . . . . . . . . . . . . 17 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥)))) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
1661653expia 1121 . . . . . . . . . . . . . . . 16 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥))) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
167166expdimp 452 . . . . . . . . . . . . . . 15 ((((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑁‘(𝑇𝑥)) ∈ ℝ) → (0 < (𝑁‘(𝑇𝑥)) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
168120, 129, 120, 167syl21anc 837 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
169163, 168mpid 44 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
170 0red 11293 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ∈ ℝ)
1714, 123, 18blof 30817 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊)) → (𝐹𝑥):𝑋⟶ℂ)
1723, 95, 171mp3an12 1451 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) → (𝐹𝑥):𝑋⟶ℂ)
173122, 172syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → (𝐹𝑥):𝑋⟶ℂ)
174173ad2ant2r 746 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝐹𝑥):𝑋⟶ℂ)
1754, 123, 97nmooge0 30799 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥):𝑋⟶ℂ) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
1763, 95, 175mp3an12 1451 . . . . . . . . . . . . . . . 16 ((𝐹𝑥):𝑋⟶ℂ → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
177174, 176syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
178170, 127, 129, 177, 161letrd 11447 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ 𝑦)
179 breq1 5169 . . . . . . . . . . . . . 14 (0 = (𝑁‘(𝑇𝑥)) → (0 ≤ 𝑦 ↔ (𝑁‘(𝑇𝑥)) ≤ 𝑦))
180178, 179syl5ibcom 245 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 = (𝑁‘(𝑇𝑥)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
181 0re 11292 . . . . . . . . . . . . . . 15 0 ∈ ℝ
182 leloe 11376 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝑁‘(𝑇𝑥)) ∈ ℝ) → (0 ≤ (𝑁‘(𝑇𝑥)) ↔ (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥)))))
183181, 120, 182sylancr 586 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 ≤ (𝑁‘(𝑇𝑥)) ↔ (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥)))))
184160, 183mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥))))
185169, 180, 184mpjaod 859 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)
186185expr 456 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
187186adantrr 716 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
188119, 187syld 47 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
189188expr 456 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → ((𝑁𝑥) ≤ 1 → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
190189com23 86 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
191190ralrimdva 3160 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
192191reximdva 3174 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
193101, 192mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
194 eqid 2740 . . . . . 6 (𝑈 normOpOLD 𝑈) = (𝑈 normOpOLD 𝑈)
1954, 4, 10, 10, 194, 3, 3nmobndi 30807 . . . . 5 (𝑇:𝑋𝑋 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
1968, 195syl 17 . . . 4 (𝜑 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
197193, 196mpbird 257 . . 3 (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ)
198 ltpnf 13183 . . 3 (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)
199197, 198syl 17 . 2 (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)
200 htth.4 . . . 4 𝐵 = (𝑈 BLnOp 𝑈)
201194, 5, 200isblo 30814 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)))
2023, 3, 201mp2an 691 . 2 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞))
2031, 199, 202sylanbrc 582 1 (𝜑𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976  cop 4654   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321   < clt 11324  cle 11325  2c2 12348  cexp 14112  abscabs 15283  NrmCVeccnv 30616  BaseSetcba 30618  normCVcnmcv 30622  ·𝑖OLDcdip 30732   LnOp clno 30772   normOpOLD cnmoo 30773   BLnOp cblo 30774  CPreHilOLDccphlo 30844  CBanccbn 30894  CHilOLDchlo 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-dc 10515  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-t1 23343  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-fcls 23970  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-lno 30776  df-nmoo 30777  df-blo 30778  df-0o 30779  df-ph 30845  df-cbn 30895  df-hlo 30918
This theorem is referenced by:  htth  30950
  Copyright terms: Public domain W3C validator