MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htthlem Structured version   Visualization version   GIF version

Theorem htthlem 30908
Description: Lemma for htth 30909. The collection 𝐾, which consists of functions 𝐹(𝑧)(𝑤) = ⟨𝑤𝑇(𝑧)⟩ = ⟨𝑇(𝑤) ∣ 𝑧 for each 𝑧 in the unit ball, is a collection of bounded linear functions by ipblnfi 30846, so by the Uniform Boundedness theorem ubth 30864, there is a uniform bound 𝑦 on 𝐹(𝑥) ∥ for all 𝑥 in the unit ball. Then 𝑇(𝑥) ∣ ↑2 = ⟨𝑇(𝑥) ∣ 𝑇(𝑥)⟩ = 𝐹(𝑥)( 𝑇(𝑥)) ≤ 𝑦𝑇(𝑥) ∣, so 𝑇(𝑥) ∣ ≤ 𝑦 and 𝑇 is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1 𝑋 = (BaseSet‘𝑈)
htth.2 𝑃 = (·𝑖OLD𝑈)
htth.3 𝐿 = (𝑈 LnOp 𝑈)
htth.4 𝐵 = (𝑈 BLnOp 𝑈)
htthlem.5 𝑁 = (normCV𝑈)
htthlem.6 𝑈 ∈ CHilOLD
htthlem.7 𝑊 = ⟨⟨ + , · ⟩, abs⟩
htthlem.8 (𝜑𝑇𝐿)
htthlem.9 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
htthlem.10 𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))
htthlem.11 𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
Assertion
Ref Expression
htthlem (𝜑𝑇𝐵)
Distinct variable groups:   𝑦,𝑤,𝐹   𝑥,𝑤,𝑧,𝐾,𝑦   𝑤,𝑁,𝑥,𝑦,𝑧   𝑤,𝑃,𝑧   𝑤,𝑊,𝑥,𝑦,𝑧   𝜑,𝑤,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧   𝑤,𝑈,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦)   𝐹(𝑥,𝑧)   𝐿(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem htthlem
StepHypRef Expression
1 htthlem.8 . 2 (𝜑𝑇𝐿)
2 htthlem.6 . . . . . . . . . 10 𝑈 ∈ CHilOLD
32hlnvi 30883 . . . . . . . . 9 𝑈 ∈ NrmCVec
4 htth.1 . . . . . . . . . . . . 13 𝑋 = (BaseSet‘𝑈)
5 htth.3 . . . . . . . . . . . . 13 𝐿 = (𝑈 LnOp 𝑈)
64, 4, 5lnof 30746 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑋)
73, 3, 6mp3an12 1453 . . . . . . . . . . 11 (𝑇𝐿𝑇:𝑋𝑋)
81, 7syl 17 . . . . . . . . . 10 (𝜑𝑇:𝑋𝑋)
98ffvelcdmda 7026 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑇𝑥) ∈ 𝑋)
10 htthlem.5 . . . . . . . . . 10 𝑁 = (normCV𝑈)
114, 10nvcl 30652 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
123, 9, 11sylancr 587 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
138ffvelcdmda 7026 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → (𝑇𝑧) ∈ 𝑋)
14 htth.2 . . . . . . . . . . . . . . . . 17 𝑃 = (·𝑖OLD𝑈)
15 hlph 30880 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
162, 15ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑈 ∈ CPreHilOLD
17 htthlem.7 . . . . . . . . . . . . . . . . 17 𝑊 = ⟨⟨ + , · ⟩, abs⟩
18 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
19 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧)))
204, 14, 16, 17, 18, 19ipblnfi 30846 . . . . . . . . . . . . . . . 16 ((𝑇𝑧) ∈ 𝑋 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) ∈ (𝑈 BLnOp 𝑊))
2113, 20syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑋) → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) ∈ (𝑈 BLnOp 𝑊))
22 htthlem.10 . . . . . . . . . . . . . . 15 𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))
2321, 22fmptd 7056 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑋⟶(𝑈 BLnOp 𝑊))
2423ffund 6663 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
2524adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → Fun 𝐹)
26 id 22 . . . . . . . . . . . . 13 (𝑤𝐾𝑤𝐾)
27 htthlem.11 . . . . . . . . . . . . 13 𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
2826, 27eleqtrdi 2843 . . . . . . . . . . . 12 (𝑤𝐾𝑤 ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}))
29 fvelima 6896 . . . . . . . . . . . 12 ((Fun 𝐹𝑤 ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})) → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤)
3025, 28, 29syl2an 596 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑤𝐾) → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤)
3130ex 412 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑤𝐾 → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤))
32 fveq2 6831 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑁𝑧) = (𝑁𝑦))
3332breq1d 5105 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑁𝑧) ≤ 1 ↔ (𝑁𝑦) ≤ 1))
3433elrab 3644 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} ↔ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1))
35 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → (𝑇𝑧) = (𝑇𝑦))
3635oveq2d 7371 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (𝑤𝑃(𝑇𝑧)) = (𝑤𝑃(𝑇𝑦)))
3736mpteq2dv 5189 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))))
3837, 22, 4mptfvmpt 7171 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑋 → (𝐹𝑦) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))))
3938fveq1d 6833 . . . . . . . . . . . . . . . . . 18 (𝑦𝑋 → ((𝐹𝑦)‘𝑥) = ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))‘𝑥))
40 oveq1 7362 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → (𝑤𝑃(𝑇𝑦)) = (𝑥𝑃(𝑇𝑦)))
41 eqid 2733 . . . . . . . . . . . . . . . . . . 19 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))
42 ovex 7388 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑃(𝑇𝑦)) ∈ V
4340, 41, 42fvmpt 6938 . . . . . . . . . . . . . . . . . 18 (𝑥𝑋 → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))‘𝑥) = (𝑥𝑃(𝑇𝑦)))
4439, 43sylan9eqr 2790 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑦𝑋) → ((𝐹𝑦)‘𝑥) = (𝑥𝑃(𝑇𝑦)))
4544ad2ant2lr 748 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝐹𝑦)‘𝑥) = (𝑥𝑃(𝑇𝑦)))
46 htthlem.9 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
47 rsp2 3251 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) → ((𝑥𝑋𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)))
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑥𝑋𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)))
4948impl 455 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
5049adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
5145, 50eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝐹𝑦)‘𝑥) = ((𝑇𝑥)𝑃𝑦))
5251fveq2d 6835 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝐹𝑦)‘𝑥)) = (abs‘((𝑇𝑥)𝑃𝑦)))
53 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑦𝑋 ∧ (𝑁𝑦) ≤ 1) → 𝑦𝑋)
544, 14dipcl 30703 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋𝑦𝑋) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
553, 54mp3an1 1450 . . . . . . . . . . . . . . . . 17 (((𝑇𝑥) ∈ 𝑋𝑦𝑋) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
569, 53, 55syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
5756abscld 15356 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ∈ ℝ)
5812adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
594, 10nvcl 30652 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
603, 59mpan 690 . . . . . . . . . . . . . . . . 17 (𝑦𝑋 → (𝑁𝑦) ∈ ℝ)
6160ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁𝑦) ∈ ℝ)
6258, 61remulcld 11152 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ∈ ℝ)
634, 10, 14, 16sii 30845 . . . . . . . . . . . . . . . 16 (((𝑇𝑥) ∈ 𝑋𝑦𝑋) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)))
649, 53, 63syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)))
65 1red 11123 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → 1 ∈ ℝ)
664, 10nvge0 30664 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝑇𝑥)))
673, 9, 66sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑋) → 0 ≤ (𝑁‘(𝑇𝑥)))
6812, 67jca 511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥))))
6968adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥))))
70 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁𝑦) ≤ 1)
71 lemul2a 11986 . . . . . . . . . . . . . . . . 17 ((((𝑁𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥)))) ∧ (𝑁𝑦) ≤ 1) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · 1))
7261, 65, 69, 70, 71syl31anc 1375 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · 1))
7358recnd 11150 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℂ)
7473mulridd 11139 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · 1) = (𝑁‘(𝑇𝑥)))
7572, 74breqtrd 5121 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ (𝑁‘(𝑇𝑥)))
7657, 62, 58, 64, 75letrd 11280 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ (𝑁‘(𝑇𝑥)))
7752, 76eqbrtrd 5117 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)))
7834, 77sylan2b 594 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) → (abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)))
79 fveq1 6830 . . . . . . . . . . . . . 14 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)‘𝑥) = (𝑤𝑥))
8079fveq2d 6835 . . . . . . . . . . . . 13 ((𝐹𝑦) = 𝑤 → (abs‘((𝐹𝑦)‘𝑥)) = (abs‘(𝑤𝑥)))
8180breq1d 5105 . . . . . . . . . . . 12 ((𝐹𝑦) = 𝑤 → ((abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)) ↔ (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8278, 81syl5ibcom 245 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) → ((𝐹𝑦) = 𝑤 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8382rexlimdva 3135 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8431, 83syld 47 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑤𝐾 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8584ralrimiv 3125 . . . . . . . 8 ((𝜑𝑥𝑋) → ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥)))
86 brralrspcev 5155 . . . . . . . 8 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))) → ∃𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
8712, 85, 86syl2anc 584 . . . . . . 7 ((𝜑𝑥𝑋) → ∃𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
8887ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
89 imassrn 6027 . . . . . . . . 9 (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) ⊆ ran 𝐹
9027, 89eqsstri 3978 . . . . . . . 8 𝐾 ⊆ ran 𝐹
9123frnd 6667 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ (𝑈 BLnOp 𝑊))
9290, 91sstrid 3943 . . . . . . 7 (𝜑𝐾 ⊆ (𝑈 BLnOp 𝑊))
93 hlobn 30879 . . . . . . . . 9 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
942, 93ax-mp 5 . . . . . . . 8 𝑈 ∈ CBan
9517cnnv 30668 . . . . . . . 8 𝑊 ∈ NrmCVec
9617cnnvnm 30672 . . . . . . . . 9 abs = (normCV𝑊)
97 eqid 2733 . . . . . . . . 9 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
984, 96, 97ubth 30864 . . . . . . . 8 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝐾 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
9994, 95, 98mp3an12 1453 . . . . . . 7 (𝐾 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
10092, 99syl 17 . . . . . 6 (𝜑 → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
10188, 100mpbid 232 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦)
102 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1))
103 fveq2 6831 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑁𝑧) = (𝑁𝑥))
104103breq1d 5105 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → ((𝑁𝑧) ≤ 1 ↔ (𝑁𝑥) ≤ 1))
105104elrab 3644 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} ↔ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1))
106102, 105sylibr 234 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → 𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
10722, 21dmmptd 6634 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝑋)
108107eleq2d 2819 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝑋))
109108biimpar 477 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥 ∈ dom 𝐹)
110 funfvima 7173 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
11124, 110sylan 580 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
112109, 111syldan 591 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
113112ad2ant2r 747 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
114106, 113mpd 15 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}))
115114, 27eleqtrrdi 2844 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝐹𝑥) ∈ 𝐾)
116 fveq2 6831 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑥) → ((𝑈 normOpOLD 𝑊)‘𝑤) = ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
117116breq1d 5105 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑥) → (((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 ↔ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
118117rspcv 3570 . . . . . . . . . . 11 ((𝐹𝑥) ∈ 𝐾 → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
119115, 118syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
12012ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
121120, 120remulcld 11152 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ∈ ℝ)
12223ffvelcdmda 7026 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊))
12317cnnvba 30670 . . . . . . . . . . . . . . . . . . . 20 ℂ = (BaseSet‘𝑊)
1244, 123, 97, 18nmblore 30777 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
1253, 95, 124mp3an12 1453 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
126122, 125syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
127126ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
128127, 120remulcld 11152 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))) ∈ ℝ)
129 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 𝑦 ∈ ℝ)
130129, 120remulcld 11152 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑦 · (𝑁‘(𝑇𝑥))) ∈ ℝ)
131 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑥 → (𝑇𝑧) = (𝑇𝑥))
132131oveq2d 7371 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑥 → (𝑤𝑃(𝑇𝑧)) = (𝑤𝑃(𝑇𝑥)))
133132mpteq2dv 5189 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑥 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
134133, 22, 4mptfvmpt 7171 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑋 → (𝐹𝑥) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
135134adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
136135fveq1d 6833 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)))
137 oveq1 7362 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑇𝑥) → (𝑤𝑃(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
138 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))
139 ovex 7388 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇𝑥)𝑃(𝑇𝑥)) ∈ V
140137, 138, 139fvmpt 6938 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇𝑥) ∈ 𝑋 → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
1419, 140syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
142136, 141eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
143142ad2ant2r 747 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
1449ad2ant2r 747 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑇𝑥) ∈ 𝑋)
1454, 10, 14ipidsq 30701 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → ((𝑇𝑥)𝑃(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
1463, 144, 145sylancr 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑇𝑥)𝑃(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
147143, 146eqtrd 2768 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
148147fveq2d 6835 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) = (abs‘((𝑁‘(𝑇𝑥))↑2)))
149 resqcl 14041 . . . . . . . . . . . . . . . . . . 19 ((𝑁‘(𝑇𝑥)) ∈ ℝ → ((𝑁‘(𝑇𝑥))↑2) ∈ ℝ)
150 sqge0 14053 . . . . . . . . . . . . . . . . . . 19 ((𝑁‘(𝑇𝑥)) ∈ ℝ → 0 ≤ ((𝑁‘(𝑇𝑥))↑2))
151149, 150absidd 15340 . . . . . . . . . . . . . . . . . 18 ((𝑁‘(𝑇𝑥)) ∈ ℝ → (abs‘((𝑁‘(𝑇𝑥))↑2)) = ((𝑁‘(𝑇𝑥))↑2))
152120, 151syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝑁‘(𝑇𝑥))↑2)) = ((𝑁‘(𝑇𝑥))↑2))
153120recnd 11150 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ∈ ℂ)
154153sqvald 14060 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥))↑2) = ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))))
155148, 152, 1543eqtrd 2772 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) = ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))))
156122ad2ant2r 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊))
1574, 10, 96, 97, 18, 3, 95nmblolbi 30791 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) ∧ (𝑇𝑥) ∈ 𝑋) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
158156, 144, 157syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
159155, 158eqbrtrrd 5119 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
1603, 144, 66sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ (𝑁‘(𝑇𝑥)))
161 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)
162127, 129, 120, 160, 161lemul1ad 12071 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))))
163121, 128, 130, 159, 162letrd 11280 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))))
164 lemul1 11983 . . . . . . . . . . . . . . . . . 18 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥)))) → ((𝑁‘(𝑇𝑥)) ≤ 𝑦 ↔ ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥)))))
165164biimprd 248 . . . . . . . . . . . . . . . . 17 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥)))) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
1661653expia 1121 . . . . . . . . . . . . . . . 16 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥))) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
167166expdimp 452 . . . . . . . . . . . . . . 15 ((((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑁‘(𝑇𝑥)) ∈ ℝ) → (0 < (𝑁‘(𝑇𝑥)) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
168120, 129, 120, 167syl21anc 837 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
169163, 168mpid 44 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
170 0red 11125 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ∈ ℝ)
1714, 123, 18blof 30776 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊)) → (𝐹𝑥):𝑋⟶ℂ)
1723, 95, 171mp3an12 1453 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) → (𝐹𝑥):𝑋⟶ℂ)
173122, 172syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → (𝐹𝑥):𝑋⟶ℂ)
174173ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝐹𝑥):𝑋⟶ℂ)
1754, 123, 97nmooge0 30758 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥):𝑋⟶ℂ) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
1763, 95, 175mp3an12 1453 . . . . . . . . . . . . . . . 16 ((𝐹𝑥):𝑋⟶ℂ → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
177174, 176syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
178170, 127, 129, 177, 161letrd 11280 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ 𝑦)
179 breq1 5098 . . . . . . . . . . . . . 14 (0 = (𝑁‘(𝑇𝑥)) → (0 ≤ 𝑦 ↔ (𝑁‘(𝑇𝑥)) ≤ 𝑦))
180178, 179syl5ibcom 245 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 = (𝑁‘(𝑇𝑥)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
181 0re 11124 . . . . . . . . . . . . . . 15 0 ∈ ℝ
182 leloe 11209 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝑁‘(𝑇𝑥)) ∈ ℝ) → (0 ≤ (𝑁‘(𝑇𝑥)) ↔ (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥)))))
183181, 120, 182sylancr 587 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 ≤ (𝑁‘(𝑇𝑥)) ↔ (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥)))))
184160, 183mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥))))
185169, 180, 184mpjaod 860 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)
186185expr 456 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
187186adantrr 717 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
188119, 187syld 47 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
189188expr 456 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → ((𝑁𝑥) ≤ 1 → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
190189com23 86 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
191190ralrimdva 3134 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
192191reximdva 3147 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
193101, 192mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
194 eqid 2733 . . . . . 6 (𝑈 normOpOLD 𝑈) = (𝑈 normOpOLD 𝑈)
1954, 4, 10, 10, 194, 3, 3nmobndi 30766 . . . . 5 (𝑇:𝑋𝑋 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
1968, 195syl 17 . . . 4 (𝜑 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
197193, 196mpbird 257 . . 3 (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ)
198 ltpnf 13029 . . 3 (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)
199197, 198syl 17 . 2 (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)
200 htth.4 . . . 4 𝐵 = (𝑈 BLnOp 𝑈)
201194, 5, 200isblo 30773 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)))
2023, 3, 201mp2an 692 . 2 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞))
2031, 199, 202sylanbrc 583 1 (𝜑𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wral 3049  wrex 3058  {crab 3397  wss 3899  cop 4583   class class class wbr 5095  cmpt 5176  dom cdm 5621  ran crn 5622  cima 5624  Fun wfun 6483  wf 6485  cfv 6489  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017   + caddc 11019   · cmul 11021  +∞cpnf 11153   < clt 11156  cle 11157  2c2 12190  cexp 13978  abscabs 15151  NrmCVeccnv 30575  BaseSetcba 30577  normCVcnmcv 30581  ·𝑖OLDcdip 30691   LnOp clno 30731   normOpOLD cnmoo 30732   BLnOp cblo 30733  CPreHilOLDccphlo 30803  CBanccbn 30853  CHilOLDchlo 30876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-dc 10347  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-fi 9305  df-sup 9336  df-inf 9337  df-oi 9406  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-ioo 13259  df-ico 13261  df-icc 13262  df-fz 13418  df-fzo 13565  df-seq 13919  df-exp 13979  df-hash 14248  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-clim 15405  df-sum 15604  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-hom 17195  df-cco 17196  df-rest 17336  df-topn 17337  df-0g 17355  df-gsum 17356  df-topgen 17357  df-pt 17358  df-prds 17361  df-xrs 17416  df-qtop 17421  df-imas 17422  df-xps 17424  df-mre 17498  df-mrc 17499  df-acs 17501  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-submnd 18702  df-mulg 18991  df-cntz 19239  df-cmn 19704  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-fbas 21298  df-fg 21299  df-cnfld 21302  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-cn 23152  df-cnp 23153  df-lm 23154  df-t1 23239  df-haus 23240  df-cmp 23312  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-fcls 23866  df-xms 24245  df-ms 24246  df-tms 24247  df-cncf 24808  df-cfil 25192  df-cau 25193  df-cmet 25194  df-grpo 30484  df-gid 30485  df-ginv 30486  df-gdiv 30487  df-ablo 30536  df-vc 30550  df-nv 30583  df-va 30586  df-ba 30587  df-sm 30588  df-0v 30589  df-vs 30590  df-nmcv 30591  df-ims 30592  df-dip 30692  df-lno 30735  df-nmoo 30736  df-blo 30737  df-0o 30738  df-ph 30804  df-cbn 30854  df-hlo 30877
This theorem is referenced by:  htth  30909
  Copyright terms: Public domain W3C validator