MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htthlem Structured version   Visualization version   GIF version

Theorem htthlem 30879
Description: Lemma for htth 30880. The collection 𝐾, which consists of functions 𝐹(𝑧)(𝑤) = ⟨𝑤𝑇(𝑧)⟩ = ⟨𝑇(𝑤) ∣ 𝑧 for each 𝑧 in the unit ball, is a collection of bounded linear functions by ipblnfi 30817, so by the Uniform Boundedness theorem ubth 30835, there is a uniform bound 𝑦 on 𝐹(𝑥) ∥ for all 𝑥 in the unit ball. Then 𝑇(𝑥) ∣ ↑2 = ⟨𝑇(𝑥) ∣ 𝑇(𝑥)⟩ = 𝐹(𝑥)( 𝑇(𝑥)) ≤ 𝑦𝑇(𝑥) ∣, so 𝑇(𝑥) ∣ ≤ 𝑦 and 𝑇 is bounded. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
htth.1 𝑋 = (BaseSet‘𝑈)
htth.2 𝑃 = (·𝑖OLD𝑈)
htth.3 𝐿 = (𝑈 LnOp 𝑈)
htth.4 𝐵 = (𝑈 BLnOp 𝑈)
htthlem.5 𝑁 = (normCV𝑈)
htthlem.6 𝑈 ∈ CHilOLD
htthlem.7 𝑊 = ⟨⟨ + , · ⟩, abs⟩
htthlem.8 (𝜑𝑇𝐿)
htthlem.9 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
htthlem.10 𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))
htthlem.11 𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
Assertion
Ref Expression
htthlem (𝜑𝑇𝐵)
Distinct variable groups:   𝑦,𝑤,𝐹   𝑥,𝑤,𝑧,𝐾,𝑦   𝑤,𝑁,𝑥,𝑦,𝑧   𝑤,𝑃,𝑧   𝑤,𝑊,𝑥,𝑦,𝑧   𝜑,𝑤,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧   𝑤,𝑈,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦)   𝐹(𝑥,𝑧)   𝐿(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem htthlem
StepHypRef Expression
1 htthlem.8 . 2 (𝜑𝑇𝐿)
2 htthlem.6 . . . . . . . . . 10 𝑈 ∈ CHilOLD
32hlnvi 30854 . . . . . . . . 9 𝑈 ∈ NrmCVec
4 htth.1 . . . . . . . . . . . . 13 𝑋 = (BaseSet‘𝑈)
5 htth.3 . . . . . . . . . . . . 13 𝐿 = (𝑈 LnOp 𝑈)
64, 4, 5lnof 30717 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋𝑋)
73, 3, 6mp3an12 1453 . . . . . . . . . . 11 (𝑇𝐿𝑇:𝑋𝑋)
81, 7syl 17 . . . . . . . . . 10 (𝜑𝑇:𝑋𝑋)
98ffvelcdmda 7022 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑇𝑥) ∈ 𝑋)
10 htthlem.5 . . . . . . . . . 10 𝑁 = (normCV𝑈)
114, 10nvcl 30623 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
123, 9, 11sylancr 587 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
138ffvelcdmda 7022 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → (𝑇𝑧) ∈ 𝑋)
14 htth.2 . . . . . . . . . . . . . . . . 17 𝑃 = (·𝑖OLD𝑈)
15 hlph 30851 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
162, 15ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑈 ∈ CPreHilOLD
17 htthlem.7 . . . . . . . . . . . . . . . . 17 𝑊 = ⟨⟨ + , · ⟩, abs⟩
18 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑈 BLnOp 𝑊) = (𝑈 BLnOp 𝑊)
19 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧)))
204, 14, 16, 17, 18, 19ipblnfi 30817 . . . . . . . . . . . . . . . 16 ((𝑇𝑧) ∈ 𝑋 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) ∈ (𝑈 BLnOp 𝑊))
2113, 20syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑋) → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) ∈ (𝑈 BLnOp 𝑊))
22 htthlem.10 . . . . . . . . . . . . . . 15 𝐹 = (𝑧𝑋 ↦ (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))))
2321, 22fmptd 7052 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑋⟶(𝑈 BLnOp 𝑊))
2423ffund 6660 . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
2524adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → Fun 𝐹)
26 id 22 . . . . . . . . . . . . 13 (𝑤𝐾𝑤𝐾)
27 htthlem.11 . . . . . . . . . . . . 13 𝐾 = (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
2826, 27eleqtrdi 2838 . . . . . . . . . . . 12 (𝑤𝐾𝑤 ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}))
29 fvelima 6892 . . . . . . . . . . . 12 ((Fun 𝐹𝑤 ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})) → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤)
3025, 28, 29syl2an 596 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑤𝐾) → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤)
3130ex 412 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑤𝐾 → ∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤))
32 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑁𝑧) = (𝑁𝑦))
3332breq1d 5105 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑁𝑧) ≤ 1 ↔ (𝑁𝑦) ≤ 1))
3433elrab 3650 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} ↔ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1))
35 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → (𝑇𝑧) = (𝑇𝑦))
3635oveq2d 7369 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (𝑤𝑃(𝑇𝑧)) = (𝑤𝑃(𝑇𝑦)))
3736mpteq2dv 5189 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))))
3837, 22, 4mptfvmpt 7168 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑋 → (𝐹𝑦) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))))
3938fveq1d 6828 . . . . . . . . . . . . . . . . . 18 (𝑦𝑋 → ((𝐹𝑦)‘𝑥) = ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))‘𝑥))
40 oveq1 7360 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → (𝑤𝑃(𝑇𝑦)) = (𝑥𝑃(𝑇𝑦)))
41 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))
42 ovex 7386 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑃(𝑇𝑦)) ∈ V
4340, 41, 42fvmpt 6934 . . . . . . . . . . . . . . . . . 18 (𝑥𝑋 → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑦)))‘𝑥) = (𝑥𝑃(𝑇𝑦)))
4439, 43sylan9eqr 2786 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝑦𝑋) → ((𝐹𝑦)‘𝑥) = (𝑥𝑃(𝑇𝑦)))
4544ad2ant2lr 748 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝐹𝑦)‘𝑥) = (𝑥𝑃(𝑇𝑦)))
46 htthlem.9 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
47 rsp2 3246 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑋𝑦𝑋 (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦) → ((𝑥𝑋𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)))
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑥𝑋𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦)))
4948impl 455 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
5049adantrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑥𝑃(𝑇𝑦)) = ((𝑇𝑥)𝑃𝑦))
5145, 50eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝐹𝑦)‘𝑥) = ((𝑇𝑥)𝑃𝑦))
5251fveq2d 6830 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝐹𝑦)‘𝑥)) = (abs‘((𝑇𝑥)𝑃𝑦)))
53 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑦𝑋 ∧ (𝑁𝑦) ≤ 1) → 𝑦𝑋)
544, 14dipcl 30674 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋𝑦𝑋) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
553, 54mp3an1 1450 . . . . . . . . . . . . . . . . 17 (((𝑇𝑥) ∈ 𝑋𝑦𝑋) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
569, 53, 55syl2an 596 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑇𝑥)𝑃𝑦) ∈ ℂ)
5756abscld 15364 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ∈ ℝ)
5812adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
594, 10nvcl 30623 . . . . . . . . . . . . . . . . . 18 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (𝑁𝑦) ∈ ℝ)
603, 59mpan 690 . . . . . . . . . . . . . . . . 17 (𝑦𝑋 → (𝑁𝑦) ∈ ℝ)
6160ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁𝑦) ∈ ℝ)
6258, 61remulcld 11164 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ∈ ℝ)
634, 10, 14, 16sii 30816 . . . . . . . . . . . . . . . 16 (((𝑇𝑥) ∈ 𝑋𝑦𝑋) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)))
649, 53, 63syl2an 596 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)))
65 1red 11135 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → 1 ∈ ℝ)
664, 10nvge0 30635 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝑇𝑥)))
673, 9, 66sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝑋) → 0 ≤ (𝑁‘(𝑇𝑥)))
6812, 67jca 511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥))))
6968adantr 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥))))
70 simprr 772 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁𝑦) ≤ 1)
71 lemul2a 11997 . . . . . . . . . . . . . . . . 17 ((((𝑁𝑦) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 ≤ (𝑁‘(𝑇𝑥)))) ∧ (𝑁𝑦) ≤ 1) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · 1))
7261, 65, 69, 70, 71syl31anc 1375 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ ((𝑁‘(𝑇𝑥)) · 1))
7358recnd 11162 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (𝑁‘(𝑇𝑥)) ∈ ℂ)
7473mulridd 11151 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · 1) = (𝑁‘(𝑇𝑥)))
7572, 74breqtrd 5121 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → ((𝑁‘(𝑇𝑥)) · (𝑁𝑦)) ≤ (𝑁‘(𝑇𝑥)))
7657, 62, 58, 64, 75letrd 11291 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝑇𝑥)𝑃𝑦)) ≤ (𝑁‘(𝑇𝑥)))
7752, 76eqbrtrd 5117 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ (𝑦𝑋 ∧ (𝑁𝑦) ≤ 1)) → (abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)))
7834, 77sylan2b 594 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) → (abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)))
79 fveq1 6825 . . . . . . . . . . . . . 14 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦)‘𝑥) = (𝑤𝑥))
8079fveq2d 6830 . . . . . . . . . . . . 13 ((𝐹𝑦) = 𝑤 → (abs‘((𝐹𝑦)‘𝑥)) = (abs‘(𝑤𝑥)))
8180breq1d 5105 . . . . . . . . . . . 12 ((𝐹𝑦) = 𝑤 → ((abs‘((𝐹𝑦)‘𝑥)) ≤ (𝑁‘(𝑇𝑥)) ↔ (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8278, 81syl5ibcom 245 . . . . . . . . . . 11 (((𝜑𝑥𝑋) ∧ 𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) → ((𝐹𝑦) = 𝑤 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8382rexlimdva 3130 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (∃𝑦 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} (𝐹𝑦) = 𝑤 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8431, 83syld 47 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑤𝐾 → (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))))
8584ralrimiv 3120 . . . . . . . 8 ((𝜑𝑥𝑋) → ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥)))
86 brralrspcev 5155 . . . . . . . 8 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ (𝑁‘(𝑇𝑥))) → ∃𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
8712, 85, 86syl2anc 584 . . . . . . 7 ((𝜑𝑥𝑋) → ∃𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
8887ralrimiva 3121 . . . . . 6 (𝜑 → ∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧)
89 imassrn 6026 . . . . . . . . 9 (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}) ⊆ ran 𝐹
9027, 89eqsstri 3984 . . . . . . . 8 𝐾 ⊆ ran 𝐹
9123frnd 6664 . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ (𝑈 BLnOp 𝑊))
9290, 91sstrid 3949 . . . . . . 7 (𝜑𝐾 ⊆ (𝑈 BLnOp 𝑊))
93 hlobn 30850 . . . . . . . . 9 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
942, 93ax-mp 5 . . . . . . . 8 𝑈 ∈ CBan
9517cnnv 30639 . . . . . . . 8 𝑊 ∈ NrmCVec
9617cnnvnm 30643 . . . . . . . . 9 abs = (normCV𝑊)
97 eqid 2729 . . . . . . . . 9 (𝑈 normOpOLD 𝑊) = (𝑈 normOpOLD 𝑊)
984, 96, 97ubth 30835 . . . . . . . 8 ((𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝐾 ⊆ (𝑈 BLnOp 𝑊)) → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
9994, 95, 98mp3an12 1453 . . . . . . 7 (𝐾 ⊆ (𝑈 BLnOp 𝑊) → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
10092, 99syl 17 . . . . . 6 (𝜑 → (∀𝑥𝑋𝑧 ∈ ℝ ∀𝑤𝐾 (abs‘(𝑤𝑥)) ≤ 𝑧 ↔ ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦))
10188, 100mpbid 232 . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦)
102 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1))
103 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → (𝑁𝑧) = (𝑁𝑥))
104103breq1d 5105 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → ((𝑁𝑧) ≤ 1 ↔ (𝑁𝑥) ≤ 1))
105104elrab 3650 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} ↔ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1))
106102, 105sylibr 234 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → 𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})
10722, 21dmmptd 6631 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝑋)
108107eleq2d 2814 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝑋))
109108biimpar 477 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥 ∈ dom 𝐹)
110 funfvima 7170 . . . . . . . . . . . . . . . 16 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
11124, 110sylan 580 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ dom 𝐹) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
112109, 111syldan 591 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
113112ad2ant2r 747 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝑥 ∈ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1} → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1})))
114106, 113mpd 15 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝐹𝑥) ∈ (𝐹 “ {𝑧𝑋 ∣ (𝑁𝑧) ≤ 1}))
115114, 27eleqtrrdi 2839 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (𝐹𝑥) ∈ 𝐾)
116 fveq2 6826 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑥) → ((𝑈 normOpOLD 𝑊)‘𝑤) = ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
117116breq1d 5105 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑥) → (((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 ↔ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
118117rspcv 3575 . . . . . . . . . . 11 ((𝐹𝑥) ∈ 𝐾 → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
119115, 118syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦))
12012ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ∈ ℝ)
121120, 120remulcld 11164 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ∈ ℝ)
12223ffvelcdmda 7022 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊))
12317cnnvba 30641 . . . . . . . . . . . . . . . . . . . 20 ℂ = (BaseSet‘𝑊)
1244, 123, 97, 18nmblore 30748 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
1253, 95, 124mp3an12 1453 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
126122, 125syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
127126ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ∈ ℝ)
128127, 120remulcld 11164 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))) ∈ ℝ)
129 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 𝑦 ∈ ℝ)
130129, 120remulcld 11164 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑦 · (𝑁‘(𝑇𝑥))) ∈ ℝ)
131 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑥 → (𝑇𝑧) = (𝑇𝑥))
132131oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑥 → (𝑤𝑃(𝑇𝑧)) = (𝑤𝑃(𝑇𝑥)))
133132mpteq2dv 5189 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑥 → (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑧))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
134133, 22, 4mptfvmpt 7168 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑋 → (𝐹𝑥) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
135134adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝑋) → (𝐹𝑥) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))))
136135fveq1d 6828 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)))
137 oveq1 7360 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = (𝑇𝑥) → (𝑤𝑃(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
138 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥))) = (𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))
139 ovex 7386 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑇𝑥)𝑃(𝑇𝑥)) ∈ V
140137, 138, 139fvmpt 6934 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑇𝑥) ∈ 𝑋 → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
1419, 140syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → ((𝑤𝑋 ↦ (𝑤𝑃(𝑇𝑥)))‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
142136, 141eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
143142ad2ant2r 747 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑇𝑥)𝑃(𝑇𝑥)))
1449ad2ant2r 747 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑇𝑥) ∈ 𝑋)
1454, 10, 14ipidsq 30672 . . . . . . . . . . . . . . . . . . . 20 ((𝑈 ∈ NrmCVec ∧ (𝑇𝑥) ∈ 𝑋) → ((𝑇𝑥)𝑃(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
1463, 144, 145sylancr 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑇𝑥)𝑃(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
147143, 146eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝐹𝑥)‘(𝑇𝑥)) = ((𝑁‘(𝑇𝑥))↑2))
148147fveq2d 6830 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) = (abs‘((𝑁‘(𝑇𝑥))↑2)))
149 resqcl 14049 . . . . . . . . . . . . . . . . . . 19 ((𝑁‘(𝑇𝑥)) ∈ ℝ → ((𝑁‘(𝑇𝑥))↑2) ∈ ℝ)
150 sqge0 14061 . . . . . . . . . . . . . . . . . . 19 ((𝑁‘(𝑇𝑥)) ∈ ℝ → 0 ≤ ((𝑁‘(𝑇𝑥))↑2))
151149, 150absidd 15348 . . . . . . . . . . . . . . . . . 18 ((𝑁‘(𝑇𝑥)) ∈ ℝ → (abs‘((𝑁‘(𝑇𝑥))↑2)) = ((𝑁‘(𝑇𝑥))↑2))
152120, 151syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝑁‘(𝑇𝑥))↑2)) = ((𝑁‘(𝑇𝑥))↑2))
153120recnd 11162 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ∈ ℂ)
154153sqvald 14068 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥))↑2) = ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))))
155148, 152, 1543eqtrd 2768 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) = ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))))
156122ad2ant2r 747 . . . . . . . . . . . . . . . . 17 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊))
1574, 10, 96, 97, 18, 3, 95nmblolbi 30762 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) ∧ (𝑇𝑥) ∈ 𝑋) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
158156, 144, 157syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (abs‘((𝐹𝑥)‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
159155, 158eqbrtrrd 5119 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))))
1603, 144, 66sylancr 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ (𝑁‘(𝑇𝑥)))
161 simprr 772 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)
162127, 129, 120, 160, 161lemul1ad 12082 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))))
163121, 128, 130, 159, 162letrd 11291 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))))
164 lemul1 11994 . . . . . . . . . . . . . . . . . 18 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥)))) → ((𝑁‘(𝑇𝑥)) ≤ 𝑦 ↔ ((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥)))))
165164biimprd 248 . . . . . . . . . . . . . . . . 17 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥)))) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
1661653expia 1121 . . . . . . . . . . . . . . . 16 (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 0 < (𝑁‘(𝑇𝑥))) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
167166expdimp 452 . . . . . . . . . . . . . . 15 ((((𝑁‘(𝑇𝑥)) ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑁‘(𝑇𝑥)) ∈ ℝ) → (0 < (𝑁‘(𝑇𝑥)) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
168120, 129, 120, 167syl21anc 837 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) → (((𝑁‘(𝑇𝑥)) · (𝑁‘(𝑇𝑥))) ≤ (𝑦 · (𝑁‘(𝑇𝑥))) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
169163, 168mpid 44 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
170 0red 11137 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ∈ ℝ)
1714, 123, 18blof 30747 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥) ∈ (𝑈 BLnOp 𝑊)) → (𝐹𝑥):𝑋⟶ℂ)
1723, 95, 171mp3an12 1453 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ (𝑈 BLnOp 𝑊) → (𝐹𝑥):𝑋⟶ℂ)
173122, 172syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → (𝐹𝑥):𝑋⟶ℂ)
174173ad2ant2r 747 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝐹𝑥):𝑋⟶ℂ)
1754, 123, 97nmooge0 30729 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ (𝐹𝑥):𝑋⟶ℂ) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
1763, 95, 175mp3an12 1453 . . . . . . . . . . . . . . . 16 ((𝐹𝑥):𝑋⟶ℂ → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
177174, 176syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)))
178170, 127, 129, 177, 161letrd 11291 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → 0 ≤ 𝑦)
179 breq1 5098 . . . . . . . . . . . . . 14 (0 = (𝑁‘(𝑇𝑥)) → (0 ≤ 𝑦 ↔ (𝑁‘(𝑇𝑥)) ≤ 𝑦))
180178, 179syl5ibcom 245 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 = (𝑁‘(𝑇𝑥)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
181 0re 11136 . . . . . . . . . . . . . . 15 0 ∈ ℝ
182 leloe 11220 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (𝑁‘(𝑇𝑥)) ∈ ℝ) → (0 ≤ (𝑁‘(𝑇𝑥)) ↔ (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥)))))
183181, 120, 182sylancr 587 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 ≤ (𝑁‘(𝑇𝑥)) ↔ (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥)))))
184160, 183mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (0 < (𝑁‘(𝑇𝑥)) ∨ 0 = (𝑁‘(𝑇𝑥))))
185169, 180, 184mpjaod 860 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ ((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦)) → (𝑁‘(𝑇𝑥)) ≤ 𝑦)
186185expr 456 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
187186adantrr 717 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (((𝑈 normOpOLD 𝑊)‘(𝐹𝑥)) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
188119, 187syld 47 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ (𝑥𝑋 ∧ (𝑁𝑥) ≤ 1)) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
189188expr 456 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → ((𝑁𝑥) ≤ 1 → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
190189com23 86 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝑋) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
191190ralrimdva 3129 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
192191reximdva 3142 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤𝐾 ((𝑈 normOpOLD 𝑊)‘𝑤) ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
193101, 192mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦))
194 eqid 2729 . . . . . 6 (𝑈 normOpOLD 𝑈) = (𝑈 normOpOLD 𝑈)
1954, 4, 10, 10, 194, 3, 3nmobndi 30737 . . . . 5 (𝑇:𝑋𝑋 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
1968, 195syl 17 . . . 4 (𝜑 → (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ ↔ ∃𝑦 ∈ ℝ ∀𝑥𝑋 ((𝑁𝑥) ≤ 1 → (𝑁‘(𝑇𝑥)) ≤ 𝑦)))
197193, 196mpbird 257 . . 3 (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ)
198 ltpnf 13040 . . 3 (((𝑈 normOpOLD 𝑈)‘𝑇) ∈ ℝ → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)
199197, 198syl 17 . 2 (𝜑 → ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)
200 htth.4 . . . 4 𝐵 = (𝑈 BLnOp 𝑈)
201194, 5, 200isblo 30744 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec) → (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞)))
2023, 3, 201mp2an 692 . 2 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ((𝑈 normOpOLD 𝑈)‘𝑇) < +∞))
2031, 199, 202sylanbrc 583 1 (𝜑𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  wss 3905  cop 4585   class class class wbr 5095  cmpt 5176  dom cdm 5623  ran crn 5624  cima 5626  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  +∞cpnf 11165   < clt 11168  cle 11169  2c2 12201  cexp 13986  abscabs 15159  NrmCVeccnv 30546  BaseSetcba 30548  normCVcnmcv 30552  ·𝑖OLDcdip 30662   LnOp clno 30702   normOpOLD cnmoo 30703   BLnOp cblo 30704  CPreHilOLDccphlo 30774  CBanccbn 30824  CHilOLDchlo 30847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-dc 10359  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-lm 23132  df-t1 23217  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-fcls 23844  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-cfil 25171  df-cau 25172  df-cmet 25173  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-dip 30663  df-lno 30706  df-nmoo 30707  df-blo 30708  df-0o 30709  df-ph 30775  df-cbn 30825  df-hlo 30848
This theorem is referenced by:  htth  30880
  Copyright terms: Public domain W3C validator