MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcmet Structured version   Visualization version   GIF version

Theorem hlcmet 29256
Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlcmet.x 𝑋 = (BaseSet‘𝑈)
hlcmet.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
hlcmet (𝑈 ∈ CHilOLD𝐷 ∈ (CMet‘𝑋))

Proof of Theorem hlcmet
StepHypRef Expression
1 hlobn 29250 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
2 hlcmet.x . . 3 𝑋 = (BaseSet‘𝑈)
3 hlcmet.8 . . 3 𝐷 = (IndMet‘𝑈)
42, 3cbncms 29227 . 2 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
51, 4syl 17 1 (𝑈 ∈ CHilOLD𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  CMetccmet 24418  BaseSetcba 28948  IndMetcims 28953  CBanccbn 29224  CHilOLDchlo 29247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-cbn 29225  df-hlo 29248
This theorem is referenced by:  hlmet  29257  hlcompl  29277
  Copyright terms: Public domain W3C validator