MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcmet Structured version   Visualization version   GIF version

Theorem hlcmet 30824
Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlcmet.x 𝑋 = (BaseSet‘𝑈)
hlcmet.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
hlcmet (𝑈 ∈ CHilOLD𝐷 ∈ (CMet‘𝑋))

Proof of Theorem hlcmet
StepHypRef Expression
1 hlobn 30818 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
2 hlcmet.x . . 3 𝑋 = (BaseSet‘𝑈)
3 hlcmet.8 . . 3 𝐷 = (IndMet‘𝑈)
42, 3cbncms 30795 . 2 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
51, 4syl 17 1 (𝑈 ∈ CHilOLD𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  cfv 6546  CMetccmet 25270  BaseSetcba 30516  IndMetcims 30521  CBanccbn 30792  CHilOLDchlo 30815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-iota 6498  df-fv 6554  df-cbn 30793  df-hlo 30816
This theorem is referenced by:  hlmet  30825  hlcompl  30845
  Copyright terms: Public domain W3C validator