MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcmet Structured version   Visualization version   GIF version

Theorem hlcmet 30856
Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlcmet.x 𝑋 = (BaseSet‘𝑈)
hlcmet.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
hlcmet (𝑈 ∈ CHilOLD𝐷 ∈ (CMet‘𝑋))

Proof of Theorem hlcmet
StepHypRef Expression
1 hlobn 30850 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ CBan)
2 hlcmet.x . . 3 𝑋 = (BaseSet‘𝑈)
3 hlcmet.8 . . 3 𝐷 = (IndMet‘𝑈)
42, 3cbncms 30827 . 2 (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋))
51, 4syl 17 1 (𝑈 ∈ CHilOLD𝐷 ∈ (CMet‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  CMetccmet 25170  BaseSetcba 30548  IndMetcims 30553  CBanccbn 30824  CHilOLDchlo 30847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-cbn 30825  df-hlo 30848
This theorem is referenced by:  hlmet  30857  hlcompl  30877
  Copyright terms: Public domain W3C validator