| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlcmet | Structured version Visualization version GIF version | ||
| Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlcmet.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| hlcmet.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| hlcmet | ⊢ (𝑈 ∈ CHilOLD → 𝐷 ∈ (CMet‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlobn 30824 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) | |
| 2 | hlcmet.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | hlcmet.8 | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 4 | 2, 3 | cbncms 30801 | . 2 ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝐷 ∈ (CMet‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 CMetccmet 25161 BaseSetcba 30522 IndMetcims 30527 CBanccbn 30798 CHilOLDchlo 30821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-cbn 30799 df-hlo 30822 |
| This theorem is referenced by: hlmet 30831 hlcompl 30851 |
| Copyright terms: Public domain | W3C validator |