MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcmet Structured version   Visualization version   GIF version

Theorem hlcmet 30134
Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlcmet.x 𝑋 = (BaseSetβ€˜π‘ˆ)
hlcmet.8 𝐷 = (IndMetβ€˜π‘ˆ)
Assertion
Ref Expression
hlcmet (π‘ˆ ∈ CHilOLD β†’ 𝐷 ∈ (CMetβ€˜π‘‹))

Proof of Theorem hlcmet
StepHypRef Expression
1 hlobn 30128 . 2 (π‘ˆ ∈ CHilOLD β†’ π‘ˆ ∈ CBan)
2 hlcmet.x . . 3 𝑋 = (BaseSetβ€˜π‘ˆ)
3 hlcmet.8 . . 3 𝐷 = (IndMetβ€˜π‘ˆ)
42, 3cbncms 30105 . 2 (π‘ˆ ∈ CBan β†’ 𝐷 ∈ (CMetβ€˜π‘‹))
51, 4syl 17 1 (π‘ˆ ∈ CHilOLD β†’ 𝐷 ∈ (CMetβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  β€˜cfv 6540  CMetccmet 24762  BaseSetcba 29826  IndMetcims 29831  CBanccbn 30102  CHilOLDchlo 30125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-cbn 30103  df-hlo 30126
This theorem is referenced by:  hlmet  30135  hlcompl  30155
  Copyright terms: Public domain W3C validator