![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcmet | Structured version Visualization version GIF version |
Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlcmet.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
hlcmet.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
hlcmet | ⊢ (𝑈 ∈ CHilOLD → 𝐷 ∈ (CMet‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlobn 30818 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) | |
2 | hlcmet.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | hlcmet.8 | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
4 | 2, 3 | cbncms 30795 | . 2 ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝐷 ∈ (CMet‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ‘cfv 6546 CMetccmet 25270 BaseSetcba 30516 IndMetcims 30521 CBanccbn 30792 CHilOLDchlo 30815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-iota 6498 df-fv 6554 df-cbn 30793 df-hlo 30816 |
This theorem is referenced by: hlmet 30825 hlcompl 30845 |
Copyright terms: Public domain | W3C validator |