|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hlcmet | Structured version Visualization version GIF version | ||
| Description: The induced metric on a complex Hilbert space is complete. (Contributed by NM, 8-Sep-2007.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| hlcmet.x | ⊢ 𝑋 = (BaseSet‘𝑈) | 
| hlcmet.8 | ⊢ 𝐷 = (IndMet‘𝑈) | 
| Ref | Expression | 
|---|---|
| hlcmet | ⊢ (𝑈 ∈ CHilOLD → 𝐷 ∈ (CMet‘𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlobn 30907 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CBan) | |
| 2 | hlcmet.x | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | hlcmet.8 | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 4 | 2, 3 | cbncms 30884 | . 2 ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) | 
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑈 ∈ CHilOLD → 𝐷 ∈ (CMet‘𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 CMetccmet 25288 BaseSetcba 30605 IndMetcims 30610 CBanccbn 30881 CHilOLDchlo 30904 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-cbn 30882 df-hlo 30905 | 
| This theorem is referenced by: hlmet 30914 hlcompl 30934 | 
| Copyright terms: Public domain | W3C validator |